Current Biotechnology ›› 2024, Vol. 14 ›› Issue (6): 1024-1031.DOI: 10.19586/j.2095-2341.2024.0144
• Articles • Previous Articles Next Articles
Mengqi FANG1,2(
), Ying ZHAO1, Zichen WANG1,2, Wenhao JIA2, Hui WANG2(
), Yunxia LUAN1(
)
Received:2024-09-01
Accepted:2024-09-27
Online:2024-11-25
Published:2024-12-27
Contact:
Hui WANG,Yunxia LUAN
方梦旗1,2(
), 赵颖1, 王子晨1,2, 贾文昊2, 王辉2(
), 栾云霞1(
)
通讯作者:
王辉,栾云霞
作者简介:方梦旗 E-mail: llie_fmq@163.com
基金资助:CLC Number:
Mengqi FANG, Ying ZHAO, Zichen WANG, Wenhao JIA, Hui WANG, Yunxia LUAN. Establishment and Application of Aptamer-based Fluorescent Test Strip Method for the Detection of Alternariol[J]. Current Biotechnology, 2024, 14(6): 1024-1031.
方梦旗, 赵颖, 王子晨, 贾文昊, 王辉, 栾云霞. 交链孢酚适配体荧光试纸条检测方法的建立及应用[J]. 生物技术进展, 2024, 14(6): 1024-1031.
| 序列名称 | 修饰的序列(5' |
|---|---|
| Aptamer | 5'-Cy5-AAA AAA AAA AAA AAA AAA AGG GAC GGG ATA GCT TAA CTA GTG TTC AAG CTG AGG GAC GGG A-3' |
| Probe 1 | 5'-Biotin-TCC CGT CCC TCA GCT TGA ACA CTA GTT AAG CTA TCC CGT CCC T-3' |
| Probe 2 | 5'-Biotin-TTT TTT TTT TTT TTT TTT-3' |
Table 1 Design of aptamer and complementary strand sequences
| 序列名称 | 修饰的序列(5' |
|---|---|
| Aptamer | 5'-Cy5-AAA AAA AAA AAA AAA AAA AGG GAC GGG ATA GCT TAA CTA GTG TTC AAG CTG AGG GAC GGG A-3' |
| Probe 1 | 5'-Biotin-TCC CGT CCC TCA GCT TGA ACA CTA GTT AAG CTA TCC CGT CCC T-3' |
| Probe 2 | 5'-Biotin-TTT TTT TTT TTT TTT TTT-3' |
| 加标量/(μg·L-1) | 检出量/(μg·L-1) | 回收率/% | RSD/% |
|---|---|---|---|
| 50 | 57.17 | 114.3 | 9.0 |
| 200 | 204.02 | 102.0 | 5.3 |
| 800 | 772.96 | 96.6 | 2.6 |
Table 2 Determination of spiked recoveries in wheat samples (n=3)
| 加标量/(μg·L-1) | 检出量/(μg·L-1) | 回收率/% | RSD/% |
|---|---|---|---|
| 50 | 57.17 | 114.3 | 9.0 |
| 200 | 204.02 | 102.0 | 5.3 |
| 800 | 772.96 | 96.6 | 2.6 |
| 1 | DIEKMAN M A, GREEN M L. Mycotoxins and reproduction in domestic livestock[J]. J. Anim. Sci., 1992, 70(5): 1615-1627. |
| 2 | SOLHAUG A, ERIKSEN G S, HOLME J A. Mechanisms of action and toxicity of the mycotoxin alternariol: a review[J]. Basic Clin. Pharmacol. Toxicol., 2016, 119(6): 533-539. |
| 3 | RAISTRICK H, STICKINGS C E, THOMAS R. Studies in the biochemistry of microorganisms. 90. Alternariol and alternariol monomethyl ether, metabolic products of Alternaria tenuis [J]. Biochem. J., 1953, 55(3): 421-433. |
| 4 | FRIZZELL C, NDOSSI D, KALAYOU S, et al.. An in vitro investigation of endocrine disrupting effects of the mycotoxin alternariol[J]. Toxicol. Appl. Pharmacol., 2013, 271(1): 64-71. |
| 5 | LI F Q, YOSHIZAWA T. Alternaria mycotoxins in weathered wheat from China[J]. J. Agric. Food Chem., 2000, 48(7): 2920-2924. |
| 6 | MEENA M, ZEHRA A, DUBEY M K, et al.. Comparative evaluation of biochemical changes in tomato (Lycopersicon esculentum mill.) infected by Alternaria alternata and its toxic metabolites (TeA, aoh, and ame)[J/OL]. Front. Plant Sci., 2016, 7: 1408[2024-09-25]. . |
| 7 | SOLHAUG A, VINES L L, IVANOVA L, et al.. Mechanisms involved in alternariol-induced cell cycle arrest [J]. Mutation Res. Fundam. Mol. Mechan. Mutagen., 2012, 738: 1-11. |
| 8 | BENSASSI F, GALLERNE C, DEIN O S, et al.. Mechanism of Alternariol monomethyl ether-induced mitochondrial apoptosis in human colon carcinoma cells[J]. Toxicology, 2011, 290(2/3): 230-240. |
| 9 | WANG S, GAO H, WEI Z, et al.. Shortened and multivalent aptamers for ultrasensitive and rapid detection of alternariol in wheat using optical waveguide sensors[J/OL]. Biosens. Bioelectron., 2022, 196: 113702[2024-09-25]. . |
| 10 | VIÑAS I, BONET J, SANCHIS V. Incidence and mycotoxin production by Alternaria tenuis in decayed apples[J]. Lett. Appl. Microbiol., 1992, 14(6): 284-287. |
| 11 | CHOOI Y H, MURIA-GONZALEZ M J, MEAD O L, et al.. SnPKS19 encodes the polyketide synthase for alternariol mycotoxin biosynthesis in the wheat pathogen Parastagonospora nodorum [J]. Appl. Environ. Microbiol., 2015, 81(16): 5309-5317. |
| 12 | BRZONKALIK K, HERRLING T, SYLDATK C, et al.. The influence of different nitrogen and carbon sources on mycotoxin production in Alternaria alternata [J]. Int. J. Food Microbiol., 2011, 147(2): 120-126. |
| 13 | HU S R, DOU X W, ZHANG L, et al.. Rapid detection of aflatoxin B1 in medicinal materials of Radix and rhizome by gold immunochromatographic assay[J]. Toxicon, 2018, 150: 144-150. |
| 14 | WU Y H, ZHOU Y F, HUANG H, et al.. Engineered gold nanoparticles as multicolor labels for simultaneous multi-mycotoxin detection on the immunochromatographic test strip nanosensor[J]. Sens. Actuat. B Chem., 2020, 316: 128107. |
| 15 | 杨敏,褚厚娟,朱龙佼,等.银离子比色检测技术研究进展[J].生物技术进展,2024,14(1):111-119. |
| YANG M, CHU H, ZHU L, et al.. Research progress on silver Ion colorimetric detection[J]. Curr. Biotechnol., 2024, 14(1): 111-119. | |
| 16 | ELLINGTON A D, SZOSTAK J W. In vitro selection of RNA molecules that bind specific ligands[J]. Nature, 1990, 346: 818-822. |
| 17 | DUNN M R, JIMENEZ R M, CHAPUT J C. Analysis of aptamer discovery and technology[J]. Nat. Rev. Chem., 2017, 1:76. |
| 18 | ZHAO L P, LI L S, ZHU C, et al.. pH-responsive polymer assisted aptamer functionalized magnetic nanoparticles for specific recognition and adsorption of proteins[J]. Anal. Chim. Acta, 2020, 1097: 161-168. |
| 19 | NGUYEN V T, KWON Y S, GU M B. Aptamer-based environmental biosensors for small molecule contaminants[J]. Curr. Opin. Biotechnol., 2017, 45: 15-23. |
| 20 | ZHANG L P, LI L. Colorimetric thrombin assay using aptamer-functionalized gold nanoparticles acting as a peroxidase mimetic[J]. Microchim. Acta, 2016, 183(1): 485-490. |
| 21 | SHIM W B, KIM M J, MUN H, et al.. An aptamer-based dipstick assay for the rapid and simple detection of aflatoxin B1[J]. Biosens. Bioelectron., 2014, 62: 288-294. |
| 22 | MIRIAM J R, MOHAMMAD S E S, ABDULAZIZ S B, et al.. Advances in aptamers-based lateral flow assays[J]. Trends Anal. Chem., 2017, 97:385-398. |
| 23 | ZHOU W, KONG W, DOU X, et al.. An aptamer based lateral flow strip for on-site rapid detection of ochratoxin A in Astragalus membranaceus [J]. J. Chromatogr. B Anal. Technol. Biomed. Life Sci., 2016, 1022: 102-108. |
| 24 | ZHANG G, ZHU C, HUANG Y, et al.. A lateral flow strip based aptasensor for detection of ochratoxin A in corn samples[J/OL]. Molecules, 2018, 23(2): E291[2024-09-25]. . |
| 25 | MAJDINASAB M, BADEA M, MARTY J L. Aptamer-based lateral flow assays: current trends in clinical diagnostic rapid tests[J]. Pharmaceuticals, 2022, 15(1): 90. |
| 26 | WU S J, LIU L H, DUAN N, et al.. Aptamer-based lateral flow test strip for rapid detection of Zearalenone in corn samples[J/OL]. J. Agric. Food Chem., 2018, 66(8): 1949-1954. |
| 27 | LIU Y, LIU D, CUI S, et al.. Design of a signal-amplified aptamer-based lateral flow test strip for the rapid detection of ochratoxin A in red wine[J]. Foods (basel switz.), 2022, 11(11): 1598. |
| 28 | NGUYEN A T V, DUONG B T, PARK H, et al.. Development of a peptide aptamer pair-linked rapid fluorescent diagnostic system for Zika virus detection[J]. Biosens. Bioelectron., 2022, 197: 113768[2024-09-25]. . |
| 29 | SACHAN A, ILGU M, KEMPEMA A, et al.. Specificity and ligand affinities of the cocaine aptamer: impact of structural features and physiological NaCl[J]. Anal. Chem., 2016, 88(15): 7715-7723. |
| 30 | WANG J, XIAO Y. Types and concentrations of metal ions affect local structure and dynamics of RNA[J/OL]. Phys. Rev. E, 2016, 94: 040401[2024-09-25].. |
| 31 | ZHAO L P, LI L S, LIU Z, et al.. Aptamer functionalized magnetic hydrophobic polymer with synergetic effect for enhanced adsorption of alternariol from wheat[J/OL]. Food Chem., 2024, 435: 137556[2024-09-25]. . |
| 32 | SAHA D, FETZNER R, BURKHARDT B, et al.. Identification of a polyketide synthase required for alternariol (AOH) and alternariol-9-methyl ether (AME) formation in Alternaria alternata [J/OL]. PLoS One, 2012, 7(7): e40564[2024-09-25].. |
| 33 | 许文涛,杨敏,朱龙佼,等.功能核酸概念的内涵与外延[J].生物技术进展,2021,11(4):446-454. |
| XU W, YANG M, ZHU L, et al.. The connotation and extension of the functional nucleic acid[J]. Curr. Biotechnol., 2021, 11(4): 446-454. | |
| 34 | 康帅帅,王瑞安,许文涛,等.磁适配体生物传感器[J].生物技术进展,2023,13(3):339-344. |
| KANG S, WANG R, XU W, et al.. Magnetic aptamer biosensors[J]. Curr. Biotechnol., 2023, 13(3): 339-344. | |
| 35 | 陈可仁,汪未申,朱龙佼,等.核酸自组装纳米递送载体的研究进展[J].生物技术进展,2022,12(3):352-357. |
| CHEN K, WANG W, ZHU L, et al.. Research progress of nucleic acid⁃based self⁃assembling nanocarriers[J]. Curr. Biotechnol., 2022, 12(3): 352-357. | |
| 36 | 吴一凡,林晟豪,许文涛.小分子靶标的核糖开关生物传感器研究进展[J].生物技术进展,2022,12(2):168-175. |
| WU Y, LIN S, XU W. Research progress of riboswitch biosensors for small molecule target[J]. Curr. Biotechnol., 2022, 12(2): 168-175. | |
| 37 | ZHAO L P, LI L S, ZHAO Y, et al.. Aptamer-based point-of-care-testing for small molecule targets: from aptamers to aptasensors, devices and applications[J/OL]. Trac Trends Anal. Chem., 2023, 169: 117408[2024-10-15]. . |
| 38 | GUO X, WEN F, ZHENG N, et al.. Aptamer-based biosensor for detection of mycotoxins[J/OL]. Front. Chem., 2020, 8: 195[2024-10-15]. . |
| 39 | GOPINATH S C, LAKSHMIPRIYA T, CHEN Y, et al.. Aptamer-based ‘point-of-care testing’[J]. Biotechnol. Adv., 2016, 34(3): 198-208. |
| 40 | FAN Y, LI J, AMIN K, et al.. Advances in aptamers,and application of mycotoxins detection: a review[J/OL]. Food Res. Int., 2023, 170: 113022[2024-10-15]. . |
| [1] | Caihua LI, Yankun ZHAO, Zhankun LI, Zilong SHAN, Qiao CAO, Liang MA, Fei WANG, Zhenxian GAO. Research Progress on Rht Genes in Wheat [J]. Current Biotechnology, 2024, 14(6): 980-992. |
| [2] | Liwen WANG, Jiangkun WANG, Bingbing WANG, Jianhong XU, Jianrong SHI, Xin LIU. Roles of Fusarium Toxins in Plant-pathogen Interaction [J]. Current Biotechnology, 2024, 14(2): 182-188. |
| [3] | Jie LI, Xiaoyu YUE, Liwei CUI, Wentao XU, Xiangyang LI. SELEX of Vibrio parahaemolyticus Specific Aptamer [J]. Current Biotechnology, 2023, 13(4): 612-618. |
| [4] | Shuaishuai KANG, Ruian WANG, Wentao XU, Longjiao ZHU. Magnetic Aptamer Biosensors [J]. Current Biotechnology, 2023, 13(3): 339-344. |
| [5] | Qiao CAO, Zhanliang SHI, Guocong ZHANG, Jinfu BAN, Shusong ZHENG, Xiaoyi FU, Shichang ZHANG, Mingqi HE, Ran HAN, Zhenxian GAO. Progress of CRISPR/Cas9 Application in Wheat Breeding [J]. Current Biotechnology, 2021, 11(6): 661-667. |
| [6] | Yongyi LIANG, Yue LONG, Jiahua XIAN, Jun LIN, Jin PENG. Analysis on the Research Status of Aptamer Technology Based on CiteSpace [J]. Current Biotechnology, 2021, 11(6): 783-794. |
| [7] | Limei XIAN, Yi HU, Lei LI, Zhengxi SUN, Xinyao HE, Tao LI. A Brief Review on Fusarium Head Blight Resistance Types and the Corresponding Phenotyping Methods [J]. Current Biotechnology, 2021, 11(5): 554-559. |
| [8] | Jin XIAO, Yifan CHENG, Rongrong SONG, Li SUN, Zongkuan WANG, Chunxia YUAN, Haiyan WANG, Xiue WANG. Creation and Utilization of Resistant Wheat Alien Germplasms to Fusarium Head Blight [J]. Current Biotechnology, 2021, 11(5): 560-566. |
| [9] | Yonggang WANG, Xu ZHANG, Peng ZHANG, Hongxiang MA. Plant Cell Engineering Applied in Wheat Breeding for the Resistance to FusariumHead Blight [J]. Current Biotechnology, 2021, 11(5): 574-580. |
| [10] | Wenling ZHAI, Caiyun LIU, Ying LIU, Bisheng FU, Jin CAI, Wei GUO, Qiaofeng ZHANG, Jizhong WU. Phenotypic and Molecular Identification of New Wheat Germplasm Resistant to Fusarium Head Blight [J]. Current Biotechnology, 2021, 11(5): 581-589. |
| [11] | Yong ZHANG, Wenjing HU, Chunmei ZHANG, Zhengning JIANG, Guofeng LV, Derong GAO. Analysis and Prospect of Fusarium Head Blight Resistance for New Wheat Varieties (Lines) Bred During “the 13th Five‑year Plan” [J]. Current Biotechnology, 2021, 11(5): 590-598. |
| [12] | Peisen SU. Research Advances in Wheat FHB Resistance Mechanism [J]. Current Biotechnology, 2021, 11(5): 599-609. |
| [13] | Dongao LI, Huiquan LIU, Qinhu WANG. Research Progress on Wheat Transcriptomes Responsive to Fusarium graminearum Infection [J]. Current Biotechnology, 2021, 11(5): 610-617. |
| [14] | Kaili DUAN, Cong JIANG, Guanghui WANG. Research Progress of Protein Kinases in Wheat Scab Fungus Fusarium graminearum [J]. Current Biotechnology, 2021, 11(5): 618-627. |
| [15] | Jiajun LIU, Chen CHEN, Mingxing WEN, Rui GUO, Weicheng YAO, Dongsheng LI. Combining WGCNA and PPI Network for Identifying Hub Proteins Associated with Fusarium Head Blight Responses in Wheat [J]. Current Biotechnology, 2021, 11(5): 628-633. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||