Current Biotechnology ›› 2021, Vol. 11 ›› Issue (5): 610-617.DOI: 10.19586/j.2095-2341.2021.0116
• Host-pathogen Interaction and Resistance Mechanism • Previous Articles Next Articles
Dongao LI(
), Huiquan LIU, Qinhu WANG(
)
Received:2021-06-15
Accepted:2021-07-15
Online:2021-09-25
Published:2021-10-08
Contact:
Qinhu WANG
通讯作者:
王秦虎
作者简介:李东翱 E-mail: 2503955906@qq.com;
基金资助:CLC Number:
Dongao LI, Huiquan LIU, Qinhu WANG. Research Progress on Wheat Transcriptomes Responsive to Fusarium graminearum Infection[J]. Current Biotechnology, 2021, 11(5): 610-617.
李东翱, 刘慧泉, 王秦虎. 小麦响应禾谷镰刀菌侵染的转录组学研究进展[J]. 生物技术进展, 2021, 11(5): 610-617.
| 模块 | 差异表达基因与差异累积代谢物 | 参考文献 |
|---|---|---|
| 水杨酸 | ACD11, LPS‑induced tumor necrosis factor alpha factor, NPR1, Phytoalexin‑deficient 4‑1 protein (PAD4), Salicylate O‑methyltransferase, SAP12, Guanine nucleotide‑binding protein subunit alpha‑like protein | [ |
| 茉莉酸 | 12‑oxophytodienoate reductase, 12‑oxophytodienoate reductase‑like protein, Accelerated cell death 11, Allene oxide cyclase, Allene oxide synthase, Jasmonate ZIM domain protein, Lipoxygenases, Molybdopterin biosynthesis protein CNX1, AOS, AOC, OPR3, JAZ, 4‑coumarate‑CoA ligase family protein, LOX, COI1 | [ |
| 乙烯 | ACS6, Ethylene insensitive3, Ethylene insensitive 3‑like protein, Ethylene responsive transcription factor, MBF1C, MntH2, Ethylene insensitive 2 transporter, ACS, ACO, SAM, EIN2, ERF, ETR, CTR, 1‑aminocyclopropane‑1‑carboxylate | [ |
| 脱落酸 | ABA‑responsive binding factor, Abscisic acid receptor, ABA 8′‑hydroxylase, GRAM domain‑containing protein, ABA‑responsive, ABA deficient2, ABA deficient1, ABA1, ABA2, ABA3 | [ |
| 生长素 | Auxin efflux carrier family proteins, Auxin‑induced in root cultures protein 12, Auxin‑responsive protein, Auxin influx transporter, Auxin efflux carrier components, Auxin response factor, Auxin‑responsive protein, Early auxin response protein, GH3.3 | [ |
| Ca2+信号 | PMCA, Calmodulin, CDPK, CIPK, Calcium sensing receptor | [ |
| ROS/NO | Nox, APX, POD, GPX, SOD, CAT, NOS, Prx | [ |
| 转录因子 | WRKY65, WRKY51, WRKY50, WRKY33, WRKY30, WRKY41, WRKY71, WRKY55, WRKY3, WRKY11, WRKY40, WRKY46, WRKY9, Myb, RKY35, NAC‑domain Contains transcription factor, WRKY45, WRKY70, CYP | [ |
| PR基因 | Pathogenesis‑related protein 1.1 (PR1), β‑1‑3‑glucanases (PR2), Chitinases (PR3), Vacuolar defense proteins (PR4), Thaumatin‑like proteins (PR5), Non‑specific lipid transfer proteins (PR14) | [ |
| LRR‑RK | NB‑ARC domain‑containing disease resistance proteins,Acidic endochitinase precursors,Receptor like protein 27 (RLP27),Receptor like protein 33 (RLP33), Receptor like protein 46 (RLP46),FLS2 | [ |
| PAL途径 | Tryptophan biosynthesis, Aromatic amino acid metabolism, Phenylalanine ammonia lyase 代谢物: phenols, phenolic acids, lignans, stilbenes, flavanoness, flavonols, flavones, chalcones, lignins | [ |
Table 1 Differentially expressed genes and differentially accumulated metabolites in wheat during Fusarium graminearum infection
| 模块 | 差异表达基因与差异累积代谢物 | 参考文献 |
|---|---|---|
| 水杨酸 | ACD11, LPS‑induced tumor necrosis factor alpha factor, NPR1, Phytoalexin‑deficient 4‑1 protein (PAD4), Salicylate O‑methyltransferase, SAP12, Guanine nucleotide‑binding protein subunit alpha‑like protein | [ |
| 茉莉酸 | 12‑oxophytodienoate reductase, 12‑oxophytodienoate reductase‑like protein, Accelerated cell death 11, Allene oxide cyclase, Allene oxide synthase, Jasmonate ZIM domain protein, Lipoxygenases, Molybdopterin biosynthesis protein CNX1, AOS, AOC, OPR3, JAZ, 4‑coumarate‑CoA ligase family protein, LOX, COI1 | [ |
| 乙烯 | ACS6, Ethylene insensitive3, Ethylene insensitive 3‑like protein, Ethylene responsive transcription factor, MBF1C, MntH2, Ethylene insensitive 2 transporter, ACS, ACO, SAM, EIN2, ERF, ETR, CTR, 1‑aminocyclopropane‑1‑carboxylate | [ |
| 脱落酸 | ABA‑responsive binding factor, Abscisic acid receptor, ABA 8′‑hydroxylase, GRAM domain‑containing protein, ABA‑responsive, ABA deficient2, ABA deficient1, ABA1, ABA2, ABA3 | [ |
| 生长素 | Auxin efflux carrier family proteins, Auxin‑induced in root cultures protein 12, Auxin‑responsive protein, Auxin influx transporter, Auxin efflux carrier components, Auxin response factor, Auxin‑responsive protein, Early auxin response protein, GH3.3 | [ |
| Ca2+信号 | PMCA, Calmodulin, CDPK, CIPK, Calcium sensing receptor | [ |
| ROS/NO | Nox, APX, POD, GPX, SOD, CAT, NOS, Prx | [ |
| 转录因子 | WRKY65, WRKY51, WRKY50, WRKY33, WRKY30, WRKY41, WRKY71, WRKY55, WRKY3, WRKY11, WRKY40, WRKY46, WRKY9, Myb, RKY35, NAC‑domain Contains transcription factor, WRKY45, WRKY70, CYP | [ |
| PR基因 | Pathogenesis‑related protein 1.1 (PR1), β‑1‑3‑glucanases (PR2), Chitinases (PR3), Vacuolar defense proteins (PR4), Thaumatin‑like proteins (PR5), Non‑specific lipid transfer proteins (PR14) | [ |
| LRR‑RK | NB‑ARC domain‑containing disease resistance proteins,Acidic endochitinase precursors,Receptor like protein 27 (RLP27),Receptor like protein 33 (RLP33), Receptor like protein 46 (RLP46),FLS2 | [ |
| PAL途径 | Tryptophan biosynthesis, Aromatic amino acid metabolism, Phenylalanine ammonia lyase 代谢物: phenols, phenolic acids, lignans, stilbenes, flavanoness, flavonols, flavones, chalcones, lignins | [ |
| 1 | 张广旭, 王康君, 谭一罗, 等. 小麦穗部产量性状研究进展与展望[J]. 农业与技术, 2021, 41(08): 809-813. |
| 2 | KAZAN K, GARDINER D M, MANNERS J M. On the trail of a cereal killer: recent advances in Fusarium graminearum pathogenomics and host resistance: recent advances in Fusarium-cereal interactions[J]. Mol. Plant Pathol., 2012, 13(4): 399-413. |
| 3 | SOBROVA P, ADAM V, VASATKOVA A, et al.. Deoxynivalenol and its toxicity[J]. Interdiscip. Toxicol., 2010, 3(3): 94-99. |
| 4 | EFSA P. Statement on the risks for public health related to a possible increase of the maximum level of deoxynivalenol for certain semi-processed cereal products[J]. EFSA J., 2013, 11(12): 3490. |
| 5 | TRAIL F. For blighted waves of grain: Fusarium graminearum in the postgenomics era[J]. Plant Physiol. Am. Soc. Plant Biol., 2009, 149(1): 103-110. |
| 6 | DEAN R, KAN J A L, PRETORIUS Z A, et al.. The top 10 fungal pathogens in molecular plant pathology: top 10 fungal pathogens[J]. Mol. Plant Pathol., 2012, 13(4): 414-430. |
| 7 | 康振生, 黄丽丽, BUCHENAUER H, 等. 禾谷镰刀菌在小麦穗部侵染过程的细胞学研究[J]. 植物病理学报, 2004, 34(4): 329-335. |
| 8 | BAI G, SHANER G. Scab of wheat: prospects for control.[J]. Plant Disease, 1994, 78(8): 760-766. |
| 9 | 陈云, 王建强, 杨荣明, 等. 小麦赤霉病发生危害形势及防控对策[J]. 植物保护, 2017, 43(05): 11-17. |
| 10 | PAUL P A, LIPPS P E, HERSHMAN D E, et al.. A quantitative review of tebuconazole effect on Fusarium head blight and deoxynivalenol content in wheat[J]. Phytopathology, 2007, 97(2): 211-220. |
| 11 | YUEN G Y, SCHONEWEIS S D. Strategies for managing Fusarium head blight and deoxynivalenol accumulation in wheat[J]. Int. J. Food Microbiol., 2007, 119(1): 126-130. |
| 12 | IWGSC. Shifting the limits in wheat research and breeding using a fully annotated reference genome[J/OL]. Science, 2018, 361(6403): eaar7191[2021-08-03]. . |
| 13 | CUOMO C A, GÜLDENER U, XU J R, et al.. The Fusarium graminearum genome reveals a link between localized polymorphism and pathogen specialization[J]. Science, 2007, 317(5843): 1400-1402. |
| 14 | DERISI J, PENLAND L, BROWN P O, et al.. Use of a cDNA microarray to analyse gene expression patterns in human cancer[J]. Nat. Genet., 1996, 14(4): 457-460. |
| 15 | WIT P, PESPENI M H, LADNER J T, et al.. The simple fool's guide to population genomics via RNA‐Seq: an introduction to high-throughput sequencing data analysis[J]. Mol. Ecol. Resour., 2012, 12(6): 1058-1067. |
| 16 | MESTERHAZY A. Types and components of resistance to Fusarium head blight of wheat[J]. Plant Breed., 1995, 114(5): 377-386. |
| 17 | BUERSTMAYR H, BAN T, ANDERSON J A. QTL mapping and marker-assisted selection for Fusarium head blight resistance in wheat: a review[J]. Plant Breed., 2009, 128(1): 1-26. |
| 18 | WANG L, LI Q, LIU Z, et al.. Integrated transcriptome and hormone profiling highlight the role of multiple phytohormone pathways in wheat resistance against Fusarium head blight[J/OL]. PLoS ONE, 2018, 13(11): e0207036[2021-08-03]. . |
| 19 | GUNNAIAH R, KUSHALAPPA A C. Metabolomics deciphers the host resistance mechanisms in wheat cultivar Sumai-3, against trichothecene producing and non-producing isolates of Fusarium graminearum[J]. Plant Physiol. Biochem., 2014, 83: 40-50. |
| 20 | TANG D, WANG G, ZHOU J M. Receptor kinases in plant-pathogen interactions: more than pattern recognition[J]. Plant Cell, 2017, 29(4): 618-637. |
| 21 | PAN Y, LIU Z, ROCHELEAU H, et al.. Transcriptome dynamics associated with resistance and susceptibility against Fusarium head blight in four wheat genotypes[J/OL]. BMC Genom., 2018,19: 642[2021-08-03]. . |
| 22 | GOLKARI S, GILBERT J, PRASHAR S, et al.. Microarray analysis of Fusarium graminearum-induced wheat genes: identification of organ-specific and differentially expressed genes[J]. Plant Biotechnol. J., 2007, 5(1): 38-49. |
| 23 | CHETOUHI C, BONHOMME L, LASSERRE-ZUBER P, et al.. Transcriptome dynamics of a susceptible wheat upon Fusarium head blight reveals that molecular responses to Fusarium graminearum infection fit over the grain development processes[J]. Funct. Integrat. Genom., 2016, 16(2): 183-201. |
| 24 | KAZAN K, LYONS R. Intervention of phytohormone pathways by pathogen effectors[J]. Plant Cell, 2014, 26(6): 2285-2309. |
| 25 | SCHENK P M, KAZAN K, WILSON I, et al.. Coordinated plant defense responses in Arabidopsis revealed by microarray analysis[J]. Proc. Natl. Acad. Sci. USA, 2000, 97(21): 11655-11660. |
| 26 | DING L, XU H, YI H, et al.. Resistance to hemi-biotrophic F. graminearum infection is associated with coordinated and ordered expression of diverse defense signaling pathways[J/OL]. PLoS ONE, 2011, 6(4): e19008[2021-08-03]. . |
| 27 | LOAKE G, GRANT M. Salicylic acid in plant defence—the players and protagonists[J]. Curr. Opin. Plant Biol., 2007, 10(5): 466-472. |
| 28 | MAKANDAR R, NALAM V J, LEE H, et al.. Salicylic acid regulates basal resistance to Fusarium head blight in wheat[J]. Mol. Plant Microbe Interact., 2012, 25(3): 431-439. |
| 29 | MAKANDAR R, ESSIG J S, SCHAPAUGH M A, et al.. Genetically engineered resistance to Fusarium head blight in wheat by expression of Arabidopsis NPR1[J]. Mol. Plant Microbe Interact., 2006, 19(2): 123-129. |
| 30 | XIAO J, JIN X, JIA X, et al.. Transcriptome-based discovery of pathways and genes related to resistance against Fusarium head blight in wheat landrace Wangshuibai[J/OL]. BMC Genom., 2013, 14(1): 197[2021-08-03]. . |
| 31 | PIETERSE C M J, DOES DVAN D E R, ZAMIOUDIS C, et al.. Hormonal modulation of plant immunity[J]. Ann. Rev. Cell Dev. Biol., 2012, 28: 489-521. |
| 32 | LI G, YEN Y. Jasmonate and ethylene signaling pathway may mediate Fusarium head blight resistance in wheat[J]. Crop Sci., 2008, 48(5): 1888-1896. |
| 33 | FARMAKI T, SANMARTÍN M, JIMÉNEZ P, et al.. Differential distribution of the lipoxygenase pathway enzymes within potato chloroplasts[J]. J. Exp. Bot., 2007, 58(3): 555-568. |
| 34 | BALBI V, DEVOTO A. Jasmonate signalling network in Arabidopsis thaliana: crucial regulatory nodes and new physiological scenarios[J]. New Phytol., 2008, 177(2): 301-318. |
| 35 | CHEN X, STEED A, TRAVELLA S, et al.. Fusarium graminearum exploits ethylene signalling to colonize dicotyledonous and monocotyledonous plants[J]. New Phytol., 2009, 182(4): 975-983. |
| 36 | DONG X, SA J A, ethylene, and disease resistance in plants[J]. Curr. Opin. Plant Biol., 1998, 1(4): 316-323. |
| 37 | GLAZEBROOK J. Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens[J]. Ann. Rev. Phytopathol., 2005, 43(1): 205-227. |
| 38 | TON J, FLORS V, MAUCH-MANI B. The multifaceted role of ABA in disease resistance[J]. Trends Plant Sci., 2009, 14(6): 310-317. |
| 39 | KUMAR J, RAI K M, PIRSEYEDI S, et al.. Epigenetic regulation of gene expression improves Fusarium head blight resistance in durum wheat[J/OL]. Sci. Rep., 2020, 10[2021-08-03]. . |
| 40 | BUHROW L M, CRAM D, TULPAN D, et al.. Exogenous abscisic acid and gibberellic acid elicit opposing effects on Fusarium graminearum infection in wheat[J]. Phytopathology, 2016, 106(9): 986-996. |
| 41 | QI P-F, BALCERZAK M, ROCHELEAU H, et al.. Jasmonic acid and abscisic acid play important roles in host-pathogen interaction between Fusarium graminearum and wheat during the early stages of Fusarium head blight[J]. Physiol. Mol. Plant Pathol., 2016, 93: 39-48. |
| 42 | FRIML J. Auxin transport—shaping the plant[J]. Curr. Opin. Plant Biol., 2003, 6(1): 7-12. |
| 43 | KAZAN K, MANNERS J M. Linking development to defense: auxin in plant-pathogen interactions[J]. Trends Plant Sci., 2009, 14(7): 373-382. |
| 44 | PRITSCH C, MUEHLBAUER G J, BUSHNELL W R, et al.. Fungal development and induction of defense response genes during early infection of wheat spikes by Fusarium graminearum[J]. Mol. Plant Microbe Interact., 2000, 13(2): 159-169. |
| 45 | JIA H, CHO S, MUEHLBAUER G J. Transcriptome analysis of a wheat near-isogenic line pair carrying Fusarium head blight-resistant and -susceptible alleles[J]. Mol. Plant Microbe Interact., 2009, 22(11): 1366-1378. |
| 46 | ERAYMAN M, TURKTAS M, AKDOGAN G, et al.. Transcriptome analysis of wheat inoculated with Fusarium graminearum[J/OL]. Front. Plant Sci., 2015, 6:867[2021-08-03]. . |
| 47 | LECOURIEUX D, RANJEVA R, PUGIN A. Calcium in plant defence-signalling pathways[J]. New Phytol., 2006, 171(2): 249-269. |
| 48 | DU L, ALI G S, SIMONS K A, et al.. Ca2+/calmodulin regulates salicylicacid-mediated plant immunity[J]. Nature, 2009, 457(7233): 1154-1158. |
| 49 | GARCÍA-LIMONES C, DORADO G, NAVAS-CORTÉS J A, et al.. Changes in the redox status of chickpea roots in response to infection by Fusarium oxysporum f. sp. ciceris: apoplastic antioxidant enzyme activities and expression of oxidative stress-related genes[J]. Plant Biol., 2009, 11(2): 194-203. |
| 50 | ZAGO E, MORSA S, DAT J F, et al.. Nitric oxide- and hydrogen peroxideresponsive gene regulation during cell death induction in Tobacco[J]. Plant Physiol., 2006, 141(2): 404-411. |
| 51 | ZANINOTTO F, CAMERA S L, POLVERARI A, et al.. Cross talk between reactive nitrogen and oxygen species during the hypersensitive disease resistance response[J]. Plant Physiol., 2006, 141(2): 379-383. |
| 52 | SINGH K. Transcription factors in plant defense and stress responses[J]. Curr. Opin. Plant Biol., 2002, 5(5): 430-436. |
| 53 | BAHRINI I, SUGISAWA M, KIKUCHI R, et al.. Characterization of a wheat transcription factor, TaWRKY45, and its effect on Fusarium head blight resistance in transgenic wheat plants[J]. Breed. Sci., 2011, 61(2): 121-129. |
| 54 | KAGE U, YOGENDRA K N, KUSHALAPPA A C. TaWRKY70 transcription factor in wheat QTL-2DL regulates downstream metabolite biosynthetic genes to resist Fusarium graminearum infection spread within spike[J/OL]. Sci. Rep., 2017, 7(1): 42596[2021-08-03]. . |
| 55 | PRITSCH C, VANCE C P, BUSHNELL W R, et al.. Systemic expression of defense response genes in wheat spikes as a response to Fusarium graminearum infection[J]. Physiol. Mol. Plant Pathol., 2001, 58(1): 1-12. |
| 56 | DE SMET I, VOSS U, JÜRGENS G, et al.. Receptor-like kinases shape the plant[J]. Nature Cell Biol., 2009, 11(10): 1166-1173. |
| 57 | THAPA G, GUNUPURU L R, HEHIR J G, et al.. A pathogen-responsive leucine rich receptor like kinase contributes to Fusarium resistance in cereals[J/OL]. Front. Plant Sci., 2018, 9:867[2021-08-03]. . |
| 58 | MUHOVSKI Y, BATOKO H, MJACQUEMIN J. Identification, characterization and mapping of differentially expressed genes in a winter wheat cultivar (Centenaire) resistant to Fusarium graminearum infection[J]. Mol. Biol. Rep., 2012, 39(10): 9583-9600. |
| 59 | WALTER S, NICHOLSON P, DOOHAN F M. Action and reaction of host and pathogen during Fusarium head blight disease[J]. New Phytol., 2010, 185(1): 54-66. |
| [1] | AYELHAN·Haysa, Fei JIAO, Hong LIU, ANASI·Hudelati, Yubang SHEN. Integrating GWAS and Transcriptome Profiling to Identify SNP Markers Linked to High-temperature Tolerance in Esox lucius [J]. Current Biotechnology, 2025, 15(3): 432-445. |
| [2] | Zhuoying LIU, Xiaojin ZHOU, Yanli HUANG, Sen PANG. Joint Transcriptome Analysis of Maize Under Salt Stress and MeJA Treatment [J]. Current Biotechnology, 2025, 15(2): 263-275. |
| [3] | Mengqi FANG, Ying ZHAO, Zichen WANG, Wenhao JIA, Hui WANG, Yunxia LUAN. Establishment and Application of Aptamer-based Fluorescent Test Strip Method for the Detection of Alternariol [J]. Current Biotechnology, 2024, 14(6): 1024-1031. |
| [4] | Caihua LI, Yankun ZHAO, Zhankun LI, Zilong SHAN, Qiao CAO, Liang MA, Fei WANG, Zhenxian GAO. Research Progress on Rht Genes in Wheat [J]. Current Biotechnology, 2024, 14(6): 980-992. |
| [5] | Qing YANG, Gang NIU, Jiangang KANG, Chenfang WANG, Kaili DUAN. Pathogenic Mechanism of Fusarium graminearum and its Molecular Interaction with Wheat [J]. Current Biotechnology, 2024, 14(5): 738-744. |
| [6] | Yezi MA, Meijuan XIA, Cuicui LIU, Hongtao WANG, Jiaxi ZHOU. Comparative Analysis of Platelet Transcriptome and Proteome Changes in SARS-CoV2 Omicron Infection [J]. Current Biotechnology, 2024, 14(4): 649-656. |
| [7] | Hui ZHANG, Bobo LIU, Fengmei LI, Jian CUI. Study on the Involvement of Auxin Signaling Pathway in Response to Powdery Mildew Stress in Pumpkin [J]. Current Biotechnology, 2024, 14(3): 433-441. |
| [8] | Liwen WANG, Jiangkun WANG, Bingbing WANG, Jianhong XU, Jianrong SHI, Xin LIU. Roles of Fusarium Toxins in Plant-pathogen Interaction [J]. Current Biotechnology, 2024, 14(2): 182-188. |
| [9] | Hongmei QIAO. Transcriptome Analysis of the Terrestrial Plant Carallia brachiata from Rhizophoraceae [J]. Current Biotechnology, 2024, 14(2): 228-236. |
| [10] | Caihong WANG, Yuhan SHAO, Mengyuan JIANG. The Mechanisms of IL-17 Inhibiting Pseudomonas aeruginosa Infection on Lung Epithelial Cells [J]. Current Biotechnology, 2024, 14(2): 304-311. |
| [11] | Qinqin LIU, Baiming HUANG, Yezi MA, Cuicui LIU, Hongtao WANG, Jiaxi ZHOU. Comparative Analysis of Megakaryocyte and Platelet Transcriptome Changes in Acute Infection [J]. Current Biotechnology, 2023, 13(3): 465-472. |
| [12] | Qiao CAO, Zhanliang SHI, Guocong ZHANG, Jinfu BAN, Shusong ZHENG, Xiaoyi FU, Shichang ZHANG, Mingqi HE, Ran HAN, Zhenxian GAO. Progress of CRISPR/Cas9 Application in Wheat Breeding [J]. Current Biotechnology, 2021, 11(6): 661-667. |
| [13] | Limei XIAN, Yi HU, Lei LI, Zhengxi SUN, Xinyao HE, Tao LI. A Brief Review on Fusarium Head Blight Resistance Types and the Corresponding Phenotyping Methods [J]. Current Biotechnology, 2021, 11(5): 554-559. |
| [14] | Jin XIAO, Yifan CHENG, Rongrong SONG, Li SUN, Zongkuan WANG, Chunxia YUAN, Haiyan WANG, Xiue WANG. Creation and Utilization of Resistant Wheat Alien Germplasms to Fusarium Head Blight [J]. Current Biotechnology, 2021, 11(5): 560-566. |
| [15] | Yiwei WANG, Yigao FENG, Runran LIU, Chuntian LU, Aizhong CAO, Ruiqi ZHANG. Introgression and Characterization of the Homologous Group 1 Chromosomes from Roegneria kamoji into Common Wheat [J]. Current Biotechnology, 2021, 11(5): 567-573. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||