Current Biotechnology ›› 2021, Vol. 11 ›› Issue (6): 661-667.DOI: 10.19586/j.2095-2341.2020.0104
• Reviews • Next Articles
Qiao CAO1(
), Zhanliang SHI1, Guocong ZHANG1, Jinfu BAN1, Shusong ZHENG2, Xiaoyi FU1, Shichang ZHANG1, Mingqi HE1, Ran HAN1, Zhenxian GAO1(
)
Received:2020-08-28
Accepted:2021-09-03
Online:2021-11-25
Published:2021-11-26
Contact:
Zhenxian GAO
曹巧1(
), 史占良1, 张国丛1, 班进福1, 郑树松2, 傅晓艺1, 张士昌1, 何明琦1, 韩然1, 高振贤1(
)
通讯作者:
高振贤
作者简介:曹巧 E-mail:qiaocao19@163.com;
基金资助:CLC Number:
Qiao CAO, Zhanliang SHI, Guocong ZHANG, Jinfu BAN, Shusong ZHENG, Xiaoyi FU, Shichang ZHANG, Mingqi HE, Ran HAN, Zhenxian GAO. Progress of CRISPR/Cas9 Application in Wheat Breeding[J]. Current Biotechnology, 2021, 11(6): 661-667.
曹巧, 史占良, 张国丛, 班进福, 郑树松, 傅晓艺, 张士昌, 何明琦, 韩然, 高振贤. CRISPR/Cas9技术在小麦育种中的应用进展[J]. 生物技术进展, 2021, 11(6): 661-667.
| 1 | CARROLL D. Genome engineering with zinc-finger nucleases[J]. Genetics, 2011, 188(4): 773782. |
| 2 | CERMAK T, DOYLE E L, CHRISTIAN M, et al.. Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting[J/OL]. Nucl. Acids Res., 2011, 39(12): e82[2021-10-20]. . |
| 3 | JINEK M, CHYLINSKI K, FONFARA I, et al.. A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity[J]. Science, 2012, 337(6096): 816821. |
| 4 | SYMINGTON L S, GAUTIER J. Double-strand break end resection and repair pathway choice[J]. Annu. Rev. Genet., 2011, 45(1): 247-271. |
| 5 | JINEK M, JIANG F, TAYLOR D, et al.. Structures of Cas9 endonucleases reveal RNA-mediated conformational activation[J]. Science, 2014, 343(6176): 1247997-1247997. |
| 6 | WANG K, GONG Q, YE X. Recent developments and applications of genetic transformation and genome editing technologies in wheat[J]. Theor. Appl. Genet., 2020, 133(5): 1603-1622. |
| 7 | ISHINO Y, SHINAGAWA H, MAKINO K, et al.. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product[J]. J. Bacteriol., 1987, 169(12): 5429-5433. |
| 8 | BARRANGOU R, FREMAUX C, DEVEAU H, et al.. CRISPR provides acquired resistance against viruses in prokaryotes[J]. Science, 2007, 315(5819): 1709-1712. |
| 9 | WIEDENHEFT B, STERNBERG S H, DOUDNA J A. RNA-guided genetic silencing systems in bacteria and archaea[J]. Nature, 2012, 482(7385): 331-338. |
| 10 | TERNS M P, TERNS R M. CRISPR-based adaptive immune systems[J]. Curr. Opin. Microbiol., 2011, 14(3): 321-327. |
| 11 | CHO S W, KIM S, KIM J M, et al.. Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease[J]. Nat. Biotechnol., 2013, 31(3): 230-232. |
| 12 | HWANG W Y, YANFANG F, DEEPAK R, et al.. Efficient genome editing in zebrafish using a CRISPR-Cas system[J]. Nat. Biotechnol., 2013, 31(3): 227-229. |
| 13 | JINEK M, EAST A, CHENG A, et al.. RNA-programmed genome editing in human cells[J/OL]. Elife, 2013, 2: e00471[2021-10-20]. . |
| 14 | MALI P, YANG L, ESVELT K M, et al.. RNA-guided human genome engineering via Cas9[J]. Science, 2013, 339(6121): 823-826. |
| 15 | LE C, RAN F A, COX D, et al.. Multiplex genome engineering using CRISPR/Cas systems[J]. Science, 2013, 339(6121): 819-823. |
| 16 | LI J F, NORVILLE J E, AACH J, et al.. Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotianabenthamiana using guide RNA and Cas9[J]. Nat. Biotechnol., 2013, 31(8): 688-691. |
| 17 | NEKRASOV V, STASKAWICZ B, WEIGEL D, et al.. Targeted mutagenesis in the model plant Nicotianabenthamiana using Cas9 RNA-guided endonuclease[J]. Nat. Biotechnol., 2013, 31(8): 691-693. |
| 18 | MAKAROVA K S, HAFT D H, BARRANGOU R, et al.. Evolution and classification of the CRISPR-Cas systems[J]. Nat. Rev. Microbiol., 2011, 9(6): 467-477. |
| 19 | MAKAROVA K S, ARAVIND L, WOLF Y I, et al.. Unification of Cas protein families and a simple scenario for the origin and evolution of CRISPR-Cas systems[J]. Biol. Direct., 2011, 6(38): 1-27. |
| 20 | DELTCHEVA E, CHYLINSKI K, SHARMA C M, et al.. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III[J]. Nature, 2011, 471(7340): 602-607. |
| 21 | SAPRANAUSKAS R, GASIUNAS G, FREMAUX C, et al.. The Streptococcus thermophilus CRISPR/Cas system provides immunity in Escherichia coli[J]. Nucl. Acids Res., 2011, 39(21): 9275-9282. |
| 22 | 殷朝敏,范秀芝,史徳芳,等.CRISPR/Cas基因编辑技术及其在真菌中的应用[J].生物技术通报,2017,33(3):58-65. |
| 23 | GASIUNAS G, BARRANGOU R, HORVATH P, et al.. Cas9–crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria[J]. Proc. Natl. Acad. Sci. USA, 2012, 109(39): 15539-15540. |
| 24 | VATS S, KUMAWAT S, KUMAR V, et al.. Genome editing in plants: exploration of technological advancements and challenges[J]. Cells, 2019, 8(11): 1386-1424. |
| 25 | STERNBERG S H, REDDING S, JINEK M, et al.. DNA interrogation by the CRISPR RNA-guided endonuclease Cas9[J]. Nature, 2014, 507(7490): 62-67. |
| 26 | WANG Y, CHENG X, SHAN Q, et al.. Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew[J]. Nat. Biotechnol., 2014, 32(9): 947-951. |
| 27 | WANG P, JUN Z, SUN L, et al.. High efficient multi-sites genome editing in allotetraploid cotton (Gossypium hirsutum) using CRISPR/Cas9 system[J]. Plant Biotechnol. J., 2017, 16(1): 137-150. |
| 28 | JIA H, ZHANG Y, ORBOVIĆ V, et al.. Genome editing of the disease susceptibility gene CsLOB1 in citrus confers resistance to citrus canker [J]. Plant Biotechnol. J., 2017, 15(7): 817-823. |
| 29 | ANDERSSON M, TURESSON H, NICOLIA A, et al.. Efficient targeted multiallelic mutagenesis in tetraploid potato (Solanum tuberosum) by transient CRISPR-Cas9 expression in protoplasts[J]. Plant Cell Rep., 2017, 36(1): 117-128. |
| 30 | FU Y, FODEN J A, KHAYTER C, et al.. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells[J]. Nat. Biotechnol, 2013, 31(9): 822-826. |
| 31 | HSU P D, SCOTT D A, WEINSTEIN J A, et al.. DNA targeting specificity of RNA-guided Cas9 nucleases[J]. Nat. Biotechnol, 2013, 31(9): 827-832. |
| 32 | LIN Y, CRADICK T J, BROWN M T, et al.. CRISPR/Cas9 systems have off-target activity with insertions or deletions between target DNA and guide RNA sequences[J]. Nucl. Acids Res., 2014, 42(11): 7473-7485. |
| 33 | FU Y, SANDER J D, REYON D, et al.. Improving CRISPR-Cas nuclease specificity using truncated guide RNAs[J]. Nat. Biotechnol., 2014, 32(3): 279-284. |
| 34 | RAN F, HSU P, LIN C Y, et al.. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity[J]. Cell, 2013, 154(6): 1380-1389. |
| 35 | SOYARS C L, PETERSON B A, BURR C A, et al.. Cutting edge genetics: CRISPR/Cas9 editing of plant genomes[J]. Plant Cell Physiol., 2018, 59(8): 1608-1620. |
| 36 | SÁNCHEZ-LEÓN S, GIL-HUMANES J, OZUNA SERAFINI C, et al.. Low-gluten, non-transgenic wheat engineered with CRISPR/Cas9[J]. Plant Biotechnol. J., 2017, 16(4): 902-910. |
| 37 | WANG W, PAN Q, HE F, et al.. Transgenerational CRISPR-Cas9 activity facilitates multiplex gene editing in allopolyploid wheat[J]. CRISPR J., 2018, 1(1): 65-74. |
| 38 | CAROLINE T, ANNE P, MICHEL B, et al.. Biolistic transformation of wheat: increased production of plants with simple insertions and heritable transgene expression[J]. Plant Cell Tiss. Org., 2014, 119(1): 171-181. |
| 39 | DAI S, PING Z, MARMEY P, et al.. Comparative analysis of transgenic rice plants obtained by Agrobacterium-mediated transformation and particle bombardment[J]. Mol. Breed., 2001, 7(1): 25-33. |
| 40 | ISHIDA Y, TSUNASHIMA M, HIEI Y, et al.. Wheat (Triticum aestivum L.) transformation using immature embryos[J]. Methods Mol. Biol., 2015, 1223: 189-198. |
| 41 | WANG K, LIU H, DU L, et al.. Generation of marker-free transgenic hexaploid wheat via an Agrobacterium-mediated co-transformation strategy in commercial Chinese wheat varieties[J]. Plant Biotechnol. J., 2016, 15(5): 12-20. |
| 42 | ZHANG Z, HUA L, GUPTA A, et al.. Development of an Agrobacterium-delivered CRISPR/Cas9 system for wheat genome editing[J]. Plant Biotechnol. J., 2019, 17(8): 1623-1635. |
| 43 | WANG W, PAN Q, TIAN B, et al.. Gene editing of the wheat homologs of TONNEAU1-recruiting motif encoding gene affects grain shape and weight in wheat[J]. Plant J., 2019, 100(2): 251-264. |
| 44 | ZHANG Y, LI D, ZHANG D, et al.. Analysis of the functions of TaGW2 homoeologs in wheat grain weight and protein content traits[J]. Plant J., 2018, 94(5): 857-866. |
| 45 | SINGH M, KUMAR M, ALBERTSEN M C, et al.. Concurrent modifications in the three homeologs of Ms45 gene with CRISPR-Cas9 lead to rapid generation of male sterile bread wheat (Triticum aestivum L.)[J]. Plant Mol. Biol., 2018, 97(4): 371-383. |
| 46 | ABE F, HAQUE E, HISANO H, et al.. Genome-edited triple-recessive mutation alters seed dormancy in wheat[J].Cell Rep., 2019, 28(5): 1362-1369. |
| 47 | HESS G T, TYCKO J, YAO D, et al.. Methods and applications of CRISPR-mediated base editing in eukaryotic genomes[J]. Mol. Cell, 2017, 68(1): 26-43. |
| 48 | ZONG Y, SONG Q, CHAO L, et al.. Efficient C-to-T base editing in plants using a fusion of nCas9 and human APOBEC3A[J]. Nat. Biotechnol., 2018, 36(10): 950-953. |
| 49 | HU J H, MILLER S M, GEURTS M H, et al.. Evolved Cas9 variants with broad PAM compatibility and high DNA specificity[J]. Nature, 2018, 556(7699): 57-63. |
| 50 | LIN Q, ZONG Y, XUE C, et al.. Prime genome editing in rice and wheat[J]. Nat. Biotechnol., 2020, 38(5): 582-585. |
| 51 | WANG K, LIU H, DU L, et al.. Generation of marker‐free transgenic hexaploid wheat via an Agrobacterium‐mediated co‐transformation strategy in commercial Chinese wheat varieties[J]. Plant Biotechnol. J., 2016, 15(5): 12-20. |
| 52 | WOO J W, KIM J, KWON S I, et al.. DNA-free genome editing in plants with preassembled CRISPR-Cas9 ribonucleoproteins[J]. Nat. Biotechnol., 2015, 33(11): 1162-1164. |
| 53 | STODDARD T J, CLASEN B M, BALTES N J, et al.. Targeted mutagenesis in plant cells through transformation of sequence-specific nuclease mRNA[J/OL]. PLoS ONE, 2016, 11(5): e0154634[2021-10-21]. . |
| 54 | CHOI I R, STENGER D C, MORRIS T J, et al.. A plant virus vector for systemic expression of foreign genes in cereals[J]. Plant J., 2000, 23(4): 547-555. |
| [1] | Yiyang LI, Zhizheng ZHOU, Shufei WANG, Boya LIU, Yufei LIU, Xiaoyan LI, Hongshu SUI, Dongwei LIU. Application and Prospect of CRISPR/Cas9 Gene Editing Technology in Disease Treatment [J]. Current Biotechnology, 2025, 15(1): 35-42. |
| [2] | Guang HU, Zhi WANG, Wei FU, Yuting SHI, Shanshan CHEN, Liang LUO, Shuang WEI. Establishment of Detection Method Based on TaqMan Real-time Fluorescence Quantitative PCR Technology for OsWx-edited Rice [J]. Current Biotechnology, 2025, 15(1): 86-92. |
| [3] | Jing WANG, Haitao GUAN, Xiaolei ZHANG, Baohuai WANG, Baohai LIU, Hongtao WEN. Detection Dynamic and Development Tendency of Agricultural Gene Editing Products [J]. Current Biotechnology, 2024, 14(5): 712-723. |
| [4] | Mingyang JIA, Lei WANG, Junfeng CHEN, Jiaqing ZHANG, Xiangzhou YAN, Baosong XING, Jing WANG. Research Progress of CRISPR/Cas9 Gene Editing Technology in Livestock and Poultry Breeding [J]. Current Biotechnology, 2024, 14(4): 529-536. |
| [5] | Jiacong ZHANG, Jigang LU. Establishment of Biallelic Knockout Technique in Nile Tilapia (Oreochromis niloticus) Based on CRISPR/Cas9 System: A Case Study of SLC24A5 Gene [J]. Current Biotechnology, 2024, 14(3): 442-450. |
| [6] | Xiaotian ZHANG, Zhi WANG, Pengyu ZHU, Shuang WEI, Wei FU, Chunmeng HUANG, Zhihong LI, Huiyu WANG, Yue JIAO. A Rapid Detection Method Based on qPCR for CRISPR/Cas9 Edited Crops [J]. Current Biotechnology, 2023, 13(6): 907-912. |
| [7] | Kehao CAO, Junli ZHU, Huashan HE, Weizhuo XU. Impact of the Fourth Modifications of Patent Laws on Biotechnology Patent Applications and Industry Development [J]. Current Biotechnology, 2023, 13(5): 663-670. |
| [8] | Ali WANG, Jiangdong LIU. Research Progress on the CRISPR/Cas System in Zebrafish [J]. Current Biotechnology, 2023, 13(4): 485-491. |
| [9] | Maolan XIONG, Siyan WEI, Juntao LUO, Bingshe HAN, Junfang ZHANG. The Effects of hdac11 Knockout of Zebrafish on Lipid Metabolism [J]. Current Biotechnology, 2023, 13(4): 588-595. |
| [10] | Siyu GAI, Ziqi CHEN, Hanchao XIA, Rengui ZHAO, Xiangguo LIU. Research Progress of CRISPR/Cas9 Technology in Plant Promoter Editing [J]. Current Biotechnology, 2023, 13(3): 321-328. |
| [11] | Hui SUN, Chunyi ZHANG, Ling JIANG. Progress of Plant Molecular Farming in Pharmaceutical Use [J]. Current Biotechnology, 2023, 13(1): 65-71. |
| [12] | Yang YANG, Fenglin WANG, De LIU, Yuanyuan LUO, Jianhua ZHU. Research Progress of CRISPR⁃Cas9 Technology on the Production of Plant Secondary Metabolites [J]. Current Biotechnology, 2022, 12(6): 806-816. |
| [13] | Kun YU, Jiaqi XUE, Jinkuan WANG, Yongtao YU. Research Progress on Application of CRISPR/Cas9 Gene Editing Technique in Filamentous Fungi [J]. Current Biotechnology, 2022, 12(5): 696-704. |
| [14] | Weisong GAO, Jinping DOU, Shuang WEI, Xingjian LIU, Zhifang ZHANG, Yinyu LI. Classification and Research Status of CRISPR/Cas Systems [J]. Current Biotechnology, 2022, 12(4): 532-538. |
| [15] | Xing DANG, Binwei ZHI, Kehao CAO, Tingting LIU, Biao CHEN, Yuanjie DING. Patent Analysis on Genetically Modified Maize Biological Breeding Technology and Development Suggestions [J]. Current Biotechnology, 2022, 12(4): 614-622. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||