Current Biotechnology ›› 2023, Vol. 13 ›› Issue (2): 220-227.DOI: 10.19586/j.2095-2341.2022.0207
• Reviews • Previous Articles Next Articles
Yamei ZHOU(
), Jia LIU, Dan LU, Qingxin KONG(
)
Received:2022-12-08
Accepted:2023-02-17
Online:2023-03-25
Published:2023-04-07
Contact:
Qingxin KONG
通讯作者:
孔庆新
作者简介:周亚梅 E-mail: chm_zhouym@163.com;
基金资助:CLC Number:
Yamei ZHOU, Jia LIU, Dan LU, Qingxin KONG. Progress on Lipase Immobilization and its Application in Pharmaceutical Synthesis[J]. Current Biotechnology, 2023, 13(2): 220-227.
周亚梅, 刘佳, 陆丹, 孔庆新. 脂肪酶的固定化及其在药物合成中的应用进展[J]. 生物技术进展, 2023, 13(2): 220-227.
| 1 | NELSON J M, GRIFFIN E G. Adsorption of invertase[J]. J. Am. Chem. Soc., 1916, 38(5): 1109-1115. |
| 2 | 路雪纯,辛嘉英,张帅,等.脂肪酶固定化及其在食品领域中应用的研究进展[J]. 食品工业科技, 2021, 42(17): 423-431. |
| 3 | WU H, MU W M. Application prospects and opportunities of inorganic nanomaterials for enzyme immobilization in the food-processing industry[J/OL]. Curr. Opin. Food. Sci., 2022, 47: 100909[2023-01-26]. . |
| 4 | MOGUEI M R S, HABIBI Z, SHAHEDI M, et al.. Immobilization of Thermomyces lanuginosus lipase through isocyanide-based multi component reaction on multi-walled carbon nanotube: application for kinetic resolution of rac-ibuprofen[J/OL]. Biotechnol. Rep., 2022, 35: e00759[2023-01-26]. . |
| 5 | 张亚格,庞雨,张维,等.脂肪酶研发态势的全球专利分析[J].生物技术进展, 2021, 11(6): 749-757. |
| 6 | SING N, DHANYA B S, VERMA M L. Nano-immobilized biocatalysts and their potential biotechnological applications in bioenergy production[J]. Mater. Sci. Energy Technol., 2020, 3: 808-824. |
| 7 | BIJOY G, RAJEEV R, BENNY L, et al.. Enzyme immobilization on biomass-derived carbon materials as a sustainable approach towards environmental applications[J/OL]. Chemosphere, 2022, 307: 135759[2022-11-26]. j.chemosphere.2022. 135759. |
| 8 | 熊小龙,杜鹏飞,金鹏,等.脂肪酶催化药物合成的研究进展[J].化学与生物工程, 2010, 27(8): 1-8. |
| 9 | 刘茹,焦成瑾,杨玲娟,等.酶固定化研究进展[J].食品安全质量检测学报, 2021, 12(5): 1861-1869. |
| 10 | 侯超,张申平,马跃龙.乳糖酶固定化研究进展[J].食品安全质量检测学报, 2022, 13(19): 6346-6353. |
| 11 | CAVALCANTIA M S, ALVES L B, DUARTE A, et al.. Immobilization of Thermomyces lanuginosus lipase via ionic adsorption on superparamagnetic iron oxide nanoparticles: facile synthesis and improved catalytic performance[J]. Chem. Eng. J., 2022, 431(2): 134128-134141. |
| 12 | YAO L W, MUBARAK N M, DEHGHANI M H, et al.. Insight into immobilization efficiency of lipase enzyme as a biocatalyst on the graphene oxide for adsorption of Azo dyes from industrial wastewater effluent[J/OL]. J. Mol. Liq., 2022, 354: 118849[2022-11-26]. . |
| 13 | CAO Y P, ZHI G Y, ZHANG D H, et al.. Biosynthesis of benzyl cinnamate using an efficient immobilized lipase entrapped in nano-molecular cages[J/OL]. Food Chem., 2021, 364: 130428[2022-01-26]. . |
| 14 | SANTOS L A, ALNOCH R C, KRIEGER N. Immobilization of Pseudomonas fluorescens lipase on chitosan crosslinked with polyaldehyde starch for kinetic resolution of sec-alcohols[J]. Proc. Biochem., 2022, 122(2): 238-247. |
| 15 | BINHAYEEDING N, YUNU T, SANGKHARAK K, et al.. Immobilisation of Candida rugosa lipase on polyhydroxybutyrate via a combination of adsorption and cross-linking agents to enhance acylglycerol production[J]. Proc. Biochem., 2020, 95: 174-185. |
| 16 | GONCALVES G R F, GANDOLFI O R R, VELOSO C M, et al.. Immobilization of porcine pancreatic lipase on activated carbon by adsorption and covalent bonding and its application in the synthesis of butyl butyrate[J]. Proc. Biochem., 2021, 111(2): 114-123. |
| 17 | SUN B Z, CHEN J, ZHANG P L, et al.. Enhanced MOF-immobilized lipase CAL-A with polyethylene glycol for efficient stereoselective hydrolysis of aromatic acid esters[J/OL]. Biochem. Eng. J., 2022, 189: 108707[2022-11-26]. . |
| 18 | MOHAMMADI N S, KHIABANI M S, GHANBARZADEH B, et al.. Improvement of lipase biochemical properties via a two-step immobilization method: adsorption onto silicon dioxide nanoparticles and entrapment in a polyvinyl alcohol/alginate hydrogel[J]. J. Biotechnol., 2020, 323: 189-202. |
| 19 | 余冲,孙秀丽,王东旭,等.酶固定化载体及固定化方法最新研究进展[J]. 广东化工, 2021, 48(2): 60-62. |
| 20 | 李丽娟,夏文静,马贵平.碳纳米管固定化纤维素酶的最佳工艺研究[J]. 生物技术进展, 2020, 10(4): 426-431. |
| 21 | 周亚梅,孔祥正,韩慧,等.聚脲多孔材料的简单制备及在酶固定和手性拆分中的应用[J].高等学校化学学报, 2017, 38(3): 495-502. |
| 22 | HAN H, ZHOU Y M, KONG X Z, et al.. Immobilization of lipase from Pseudomonas fluorescens on porous polyurea and its application in kinetic resolution of racemic 1-phenylethanol[J]. ACS Appl. Mater. Interfaces, 2016, 8(39): 25714-25724. |
| 23 | SHEN F, ARSHI S, XIAO X X, et al.. One-step electrochemical approach of enzyme immobilization for bioelectrochemical applications[J/OL]. Synthetic Metals., 2022, 291: 117205[2022-11-26]. . |
| 24 | ADAMS S, BRESLOFF P, MASON C. Pharmacological differences between the optical isomers of ibuprofen: evidence for metabolic inversion of the (-)-isomer[J]. J. Pharm. Pharmacol., 1976, 28(3): 256-257. |
| 25 | MOGUEI M R S, HABIBI Z, SHAHEDI M, et al.. Immobilization of Thermomyces lanuginosus lipase through isocyanide-based multi component reaction on multi-walled carbon nanotube: application for kinetic resolution of rac-ibuprofen[J/OL]. Biotechnol. Rep., 2022, 35: e00759[2022-11-26]. . |
| 26 | YUAN X, WANG L J, LIU G Y, et al..Resolution of (R,S)‐ibuprofen catalyzed by immobilized Novozym40086 in organic phase. Chirality, 2019, 31(6): 445-456. |
| 27 | 黄卓楠,李娜,尚雁,等. SBA-15固定化脂肪酶催化拆分萘普生甲酯水解反应[J].化学通报, 2011, 74(1):61-66. |
| 28 | 张领兵,张东旭,欧亮,等.R型酮咯酸的制备方法及其应用与流程: 中国, 202211032611[P]. 2022-08-26. |
| 29 | SHINDE S D, YADAV G D. Insight into microwave assisted immobilized Candida antarctica lipase B catalyzed kinetic resolution of RS-(±)-ketorolac [J]. Proc. Biochem., 2015, 50(2): 230-236. |
| 30 | 唐慧.脂肪酶/硫酸氧钒动态动力学拆分制备西汀类药物手性中间体研究[D].青岛:青岛科技大学, 2021. |
| 31 | DULEBA J, SIODMIAK T, MARSZALL M P. The influence of substrate systems on the enantioselective and lipolytic activity of immobilized amano PS from Burkholderia cepacia lipase (APS-BCL) [J]. Proc. Biochem., 2022, 120: 126-137. |
| 32 | BHUSHAN I, PARSHAD R, QAZI G N, et al.. Lipase enzyme immobilization on synthetic beaded macroporous copolymers for kinetic resolution of chiral drugs intermediates[J]. Proc. Biochem., 2008, 43(4): 321-330. |
| 33 | LU Y L, ZHAN R, CHEN X L, et al.. The optimized biocatalytic synthesis of (S)‐methyl 2‐chlorobutanoate by Acinetobacter sp. lipase[J]. Chirality, 2022, 34(8): 1228-1238. |
| 34 | EI-BEHAIRY M F, SUNDBY E. Synthesis of the antiepileptic (R)-stiripentol by a combination of lipase catalyzed resolution and alkene metathesis[J]. Tetrahedron: Asymmetry, 2013, 24(5-6): 285-289. |
| 35 | CIPOLATTIi E P, VALERIO A, HENRIQUES R O, et al.. Production of new nanobiocatalysts via immobilization of lipase B from C. antarctica on polyurethane nanosupports for application on food and pharmaceutical industries[J]. Int. J. Biol. Macromol., 2020, 165: 2957-2963. |
| 36 | 江笔辉.酶催化酯交换动力学拆分卤代扁桃酸对映体的研究[D].湖南岳阳: 湖南理工学院, 2022. |
| 37 | LI Y Y, WANG A, SHEN Y Q, et al.. Convenient enzymatic resolution of cis-6-benzyltetrahydro-1H-pyrrolo[3,4-b]pyridine-5,7(6H,7aH)-dione using lipase to prepare the intermediate of moxifloxacin[J]. J. Mol. Catal B: Enzym., 2014, 110: 178-183. |
| [1] | Xi CHEN, Huoqing HUANG, Yingguo BAI, Yuan WANG, Chengqiang XIA, Huiying LUO, Bin YAO, Tao TU, Xiaoqing LIU. Reaction System Optimization and Application Potential Analysis of 4-Oxalocrotonate Tautomerase in Catalytic Synthesis of Cinnamaldehyde [J]. Current Biotechnology, 2025, 15(2): 296-304. |
| [2] | Chen ZHONG, Binxu ZHAO, Mei LIU, Tianhong LIU, Ying WANG. Enzymes Immobilization Technology and its Application Progress in Food Industry [J]. Current Biotechnology, 2024, 14(4): 537-544. |
| [3] | Wei LI, Aimin SHI, Bo JIAO, Qiang WANG. Preparation Technology and Characterization of Lipase Immobilized with Acetylated Arachin Nanoparticles [J]. Current Biotechnology, 2023, 13(5): 771-778. |
| [4] | Lin TAN, Ni Win Htet NWE, Chang CHEN, Zhiqiang PAN. Cloning and Functional Identification of ectABC Gene Cluster from Vibrio neocaledonicus CGJ02-2 [J]. Current Biotechnology, 2022, 12(6): 915-921. |
| [5] | Yage ZHANG, Yu PANG, Wei ZHANG, Zhengfu ZHOU. Global Patent Analysis of Lipase Development Trends [J]. Current Biotechnology, 2021, 11(6): 749-757. |
| [6] | LI Lijuan1, XIA Wenjing2, MA Guiping1 . Study on Optimum Process Conditions Immobilized Cellulase with Carbon Nanotubes [J]. Curr. Biotech., 2020, 10(4): 426-431. |
| [7] | GU Rui1, HU Jing2*, YIN Jian1* . Research Progress on Fabrication and Detection Application of Carbohydrate Microarray [J]. Curr. Biotech., 2018, 8(6): 489-499. |
| [8] | WANG Yuzhou1, MA Rui2, XIANG Jie1, CHEN Jingshi1, LI Shigui1, GONG Mingbo1, GU Jingang1*. Prokaryotic Expression of Recombinant Lipases Gene from Trichoderma lentiforme ACCC30425 and Preliminary Study of its Enzymatic Properties [J]. Curr. Biotech., 2018, 8(6): 530-536. |
| [9] | QIN Weitong, TIAN Jian, WU Ningfeng*. Design of the Whole-cell Biosensor and its Application in Environmental Monitoring [J]. Curr. Biotech., 2018, 8(5): 369-375. |
| [10] | CHEN Jing, LENG Juan, YANG Xiai, LIAO Liping, XIAO Aiping*, LIU Liangliang*. Progress on Magnetic Nanoparticles Immobilized Enzymes [J]. Curr. Biotech., 2017, 7(4): 284-289. |
| [11] | WANG Kai, LIU Hong-guo, JIANG Kun, YAN Pei-sheng*. Study on Classification and Enzymatic Propertis of Deep-sea Bacteria Producing Lipase [J]. Curr. Biotech., 2015, 5(3): 241-245. |
| [12] | YANG Wei, DU Wei*, LIU De-hua. Production of Ricinoleic Acid from Castor Oil by Free Lipase-mediated Hydrolysis [J]. Curr. Biotech., 2014, 4(5): 373-378. |
| [13] | SUN Fei, ZHENG Rong, YANG Huang-jian, ZHANG Zhu-lan*. Screening of Pancrelipase Inhibitor\|producing Strains [J]. Curr. Biotech., 2014, 4(1): 40-43. |
| [14] | SHA Sha, ZHENG Xiao-dong*. Progress of Protein Chip Construction Technology [J]. Curr. Biotech., 2011, 1(5): 312-317. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||