Current Biotechnology ›› 2024, Vol. 14 ›› Issue (4): 537-544.DOI: 10.19586/j.2095-2341.2024.0017
• Reviews • Previous Articles Next Articles
Chen ZHONG1(
), Binxu ZHAO2, Mei LIU1, Tianhong LIU1, Ying WANG1,3(
)
Received:2024-02-01
Accepted:2024-03-27
Online:2024-07-25
Published:2024-08-07
Contact:
Ying WANG
仲晨1(
), 赵彬旭2, 刘梅1, 刘天红1, 王颖1,3(
)
通讯作者:
王颖
作者简介:仲晨E-mail: 1369047180@qq.com;
基金资助:CLC Number:
Chen ZHONG, Binxu ZHAO, Mei LIU, Tianhong LIU, Ying WANG. Enzymes Immobilization Technology and its Application Progress in Food Industry[J]. Current Biotechnology, 2024, 14(4): 537-544.
仲晨, 赵彬旭, 刘梅, 刘天红, 王颖. 酶固定化技术及其在食品工业的应用进展[J]. 生物技术进展, 2024, 14(4): 537-544.
| 酶的名称 | 食品底物/产物 | 固定化方法 | 应用 |
|---|---|---|---|
| 菊粉酶 | 菊粉/果糖、低聚果糖 | 共价法、包封法 | 生产果糖糖浆、乙醇、丙酮和丁醇,用于降低糖尿病、龋齿和肥胖的风险[ |
| β-乳糖酶 | 乳糖/葡萄糖、半乳糖 | 吸附法 | 生产低乳糖和无乳糖产品[ |
| α-淀粉酶 | 玉米和马铃薯淀粉/低聚糖 | 包封法、共价/交联法 | 生产葡萄糖和果糖,用于糖果行业[ |
| 葡萄糖淀粉酶 | 淀粉/低聚糖 | 包封法 | 生产葡萄糖和果糖,用于糖果以及果汁工业[ |
| 脂肪酶 | 甘油三酯/甘油、脂肪酸 | 包封法 | 澄清果汁和葡萄酒;将植物油转化为人造黄油,生产奶酪和奶酪制品;在面包制作中减缓面包硬化[ |
| β-呋喃果糖苷酶 | 蔗糖/葡萄糖、果糖 | 包封法 | 防止果酱、糖果类产品在储存过程中糖化[ |
| L-苯丙氨酸解氨酶 | L-苯丙氨酸/抗坏血酸、氨 | 包封法 | 生产不含苯丙氨酸的产品[ |
| 天冬酰胺酶 | 丙烯酰胺/丙烯酸、氨 | 包封法 | 测定产品中丙烯酰胺含量[ |
| 脲酶 | 尿素/二氧化碳、氨 | 包封法 | 用于生物试验中控制牛奶质量[ |
Table 1 Summary of enzymes immobilization in food industry
| 酶的名称 | 食品底物/产物 | 固定化方法 | 应用 |
|---|---|---|---|
| 菊粉酶 | 菊粉/果糖、低聚果糖 | 共价法、包封法 | 生产果糖糖浆、乙醇、丙酮和丁醇,用于降低糖尿病、龋齿和肥胖的风险[ |
| β-乳糖酶 | 乳糖/葡萄糖、半乳糖 | 吸附法 | 生产低乳糖和无乳糖产品[ |
| α-淀粉酶 | 玉米和马铃薯淀粉/低聚糖 | 包封法、共价/交联法 | 生产葡萄糖和果糖,用于糖果行业[ |
| 葡萄糖淀粉酶 | 淀粉/低聚糖 | 包封法 | 生产葡萄糖和果糖,用于糖果以及果汁工业[ |
| 脂肪酶 | 甘油三酯/甘油、脂肪酸 | 包封法 | 澄清果汁和葡萄酒;将植物油转化为人造黄油,生产奶酪和奶酪制品;在面包制作中减缓面包硬化[ |
| β-呋喃果糖苷酶 | 蔗糖/葡萄糖、果糖 | 包封法 | 防止果酱、糖果类产品在储存过程中糖化[ |
| L-苯丙氨酸解氨酶 | L-苯丙氨酸/抗坏血酸、氨 | 包封法 | 生产不含苯丙氨酸的产品[ |
| 天冬酰胺酶 | 丙烯酰胺/丙烯酸、氨 | 包封法 | 测定产品中丙烯酰胺含量[ |
| 脲酶 | 尿素/二氧化碳、氨 | 包封法 | 用于生物试验中控制牛奶质量[ |
| 载体种类 | 载体材料 | 酶 | 初始酶活/% | 固定化后酶活 |
|---|---|---|---|---|
| 生物聚合物 | 海藻酸钙凝胶 | α-淀粉酶 | 80 | 75%(10次循环)[ |
| 海藻酸钙凝胶 | 葡萄糖氧化酶 | — | 37%(7次循环)[ | |
| 海藻酸钙凝胶 | 虫漆酶 | — | 70%(3次循环)[ | |
| 海藻酸钙凝胶 | 果胶酶 | 75 | 40%(6次循环)[ | |
| 明胶 | α-淀粉酶 | 40 | 46.8%(140 min)[ | |
| 壳聚糖 | β-半乳糖苷酶 | 85 | 70%(9次循环)[ | |
| 壳聚糖包被海藻酸盐 | 天冬酰胺酶 | — | 80%(4次循环)/40%(7次循环)[ | |
| 合成聚合物 | DEAE纤维素 | α-淀粉酶 | 68 | 49%(6次循环)[ |
| DEAE纤维素 | α-淀粉酶 | 84 | 96%(20次循环)[ | |
| 阴离子交换剂(DuoliteA568) | 菊粉酶 | 35.6 | 90%(3 h)[ | |
| 聚丙烯酰胺凝胶 | 菊粉酶 | 45 | 58%(96 h)[ | |
| PVA水凝胶 | 菊粉酶 | — | 60%(12次循环)/80%(3月)[ | |
| PVA水凝胶 | β-半乳糖苷酶 | — | 95%(7次循环)/51%(3月)[ | |
| PVA水凝胶 | 葡萄糖淀粉酶 | 35 | 80%(100次使用)[ | |
| 纳米颗粒 | Fe3O4纳米颗粒 | 脂肪酶 | — | 90%(10次循环)[ |
| Fe3O4纳米颗粒 | 脂肪酶 | — | 65%(7次循环)[ | |
| Fe3O4纳米颗粒 | 菊粉酶 | — | 70%(12次循环)[ | |
| SiO2纳米颗粒 | β-半乳糖苷酶 | 119 | 50%(6 h)/50%(9次循环)[ | |
| SiO2纳米颗粒 | β-半乳糖苷酶 | 120 | 71%(13次循环)[ | |
| Fe3O4-SiO2纳米颗粒 | α-淀粉酶 | — | 82%(10次循环)/74%(20次循环)[ | |
| 银纳米颗粒 | β-半乳糖苷酶 | 96 | 88%(6次循环)/83%(2月)[ | |
| 多孔陶瓷膜 | 氧化铝膜 | 脲酶 | — | 50%(5次循环)[ |
| 氧化铝膜 | 脂肪酶 | — | 65%(4次循环)[ | |
| 介孔SiO2 | β-半乳糖苷酶 | 40~65 | 50%(18 h)[ | |
| 复合物 | 壳聚糖包被AFSMNPs | α-淀粉酶 | — | 91%(10次循环)/85%(20次循环)[ |
| SiO2/壳聚糖复合物 | β-半乳糖苷酶 | 45~60 | 90%(200 h)[ |
Table 2 Effect of different carrier materials of enzyme immobilization in food industry
| 载体种类 | 载体材料 | 酶 | 初始酶活/% | 固定化后酶活 |
|---|---|---|---|---|
| 生物聚合物 | 海藻酸钙凝胶 | α-淀粉酶 | 80 | 75%(10次循环)[ |
| 海藻酸钙凝胶 | 葡萄糖氧化酶 | — | 37%(7次循环)[ | |
| 海藻酸钙凝胶 | 虫漆酶 | — | 70%(3次循环)[ | |
| 海藻酸钙凝胶 | 果胶酶 | 75 | 40%(6次循环)[ | |
| 明胶 | α-淀粉酶 | 40 | 46.8%(140 min)[ | |
| 壳聚糖 | β-半乳糖苷酶 | 85 | 70%(9次循环)[ | |
| 壳聚糖包被海藻酸盐 | 天冬酰胺酶 | — | 80%(4次循环)/40%(7次循环)[ | |
| 合成聚合物 | DEAE纤维素 | α-淀粉酶 | 68 | 49%(6次循环)[ |
| DEAE纤维素 | α-淀粉酶 | 84 | 96%(20次循环)[ | |
| 阴离子交换剂(DuoliteA568) | 菊粉酶 | 35.6 | 90%(3 h)[ | |
| 聚丙烯酰胺凝胶 | 菊粉酶 | 45 | 58%(96 h)[ | |
| PVA水凝胶 | 菊粉酶 | — | 60%(12次循环)/80%(3月)[ | |
| PVA水凝胶 | β-半乳糖苷酶 | — | 95%(7次循环)/51%(3月)[ | |
| PVA水凝胶 | 葡萄糖淀粉酶 | 35 | 80%(100次使用)[ | |
| 纳米颗粒 | Fe3O4纳米颗粒 | 脂肪酶 | — | 90%(10次循环)[ |
| Fe3O4纳米颗粒 | 脂肪酶 | — | 65%(7次循环)[ | |
| Fe3O4纳米颗粒 | 菊粉酶 | — | 70%(12次循环)[ | |
| SiO2纳米颗粒 | β-半乳糖苷酶 | 119 | 50%(6 h)/50%(9次循环)[ | |
| SiO2纳米颗粒 | β-半乳糖苷酶 | 120 | 71%(13次循环)[ | |
| Fe3O4-SiO2纳米颗粒 | α-淀粉酶 | — | 82%(10次循环)/74%(20次循环)[ | |
| 银纳米颗粒 | β-半乳糖苷酶 | 96 | 88%(6次循环)/83%(2月)[ | |
| 多孔陶瓷膜 | 氧化铝膜 | 脲酶 | — | 50%(5次循环)[ |
| 氧化铝膜 | 脂肪酶 | — | 65%(4次循环)[ | |
| 介孔SiO2 | β-半乳糖苷酶 | 40~65 | 50%(18 h)[ | |
| 复合物 | 壳聚糖包被AFSMNPs | α-淀粉酶 | — | 91%(10次循环)/85%(20次循环)[ |
| SiO2/壳聚糖复合物 | β-半乳糖苷酶 | 45~60 | 90%(200 h)[ |
| 1 | THOMPSON M, PEÑAFIEL I, COSGROVE S C, et al.. Biocatalysis using immobilized enzymes in continuous flow for the synthesis of fine chemicals[J]. Org. Proc. Res. Dev., 2019, 23(1): 9-18. |
| 2 | MALHOTRA M, KALLURI A, KUMAR C V. Nanoarmored multi-enzyme cascade catalysis[J]. Meth. Mol. Biol., 2022, 2487: 205-225. |
| 3 | SRIWONG K T, MATSUDA T. Recent advances in enzyme immobilization utilizing nanotechnology for biocatalysis[J]. Org. Proc. Res. Dev., 2022, 26(7): 1857-1877. |
| 4 | MADHAVAN A, SINDHU R, BINOD P, et al.. Strategies for design of improved biocatalysts for industrial applications[J]. Bioresour. Technol., 2017, 245(pt b): 1304-1313. |
| 5 | DICOSIMO R, MCAULIFFE J, POULOSE A J, et al.. Industrial use of immobilized enzymes[J]. Chem. Soc. Rev., 2013, 42(15): 6437-6474. |
| 6 | ZDARTA J, MEYER A S, JESIONOWSKI T, et al.. Developments in support materials for immobilization of oxidoreductases: a comprehensive review[J]. Adv. Colloid Interface Sci., 2018, 258: 1-20. |
| 7 | ZHAO F, WANG Q, DONG J, et al.. Enzyme-inorganic nanoflowers/alginate microbeads: an enzyme immobilization system and its potential application [J]. Proc. Biochem., 2017,57:87-94. |
| 8 | DATTA S, CHRISTENA L R, RAJARAM Y R S. Enzyme immobilization: an overview on techniques and support materials[J]. 3 Biotech, 2013, 3(1): 1-9. |
| 9 | NISHA S, KARTHICK S A, GOBI N. Application and properties of immobilized enzyme [J]. Chem. Sci. Rev. Lett., 2012, 1(3):148-155. |
| 10 | YUSHKOVA E, NAZAROVA E A, MATYUHINA A V, et al.. Application of immobilized enzymes in food industry[J]. J. Agric. Food Chem., 2019, 67(42): 11553-11567. |
| 11 | PRAMANIK S A N. Application of immobilized enzymes in the food industry [J]. Enzym. Food. Biotechnol., 2019, 42:711-721. |
| 12 | NESTORSON A, NEON K G, KANG E T, et al.. Enzyme immobilization in latex dispersion coatings for active food packaging [J]. Packag. Technol. Sci., 2008, 21(4):193-205. |
| 13 | RHIM J W, PARK H M, HA C S. Bio-nanocomposites for food packaging applications [J]. Prog. Polym. Sci., 2013,38(10-11):1629-1652. |
| 14 | MONTEREALI M R, DELIA SETA L, VASTARELLA W. A disposable laccase-tyrosinase based biosensor for amperometric detection of phenolic compounds in must and wine [J]. J. Mol. Catal. B-enzym., 2010, 64(3/4): 189-194. |
| 15 | YEWALE T, SINGHAL R S, VAIDYA A A.Immobilization of inulinase from Aspergillus niger NCIM 945 on chitosan and its application in continuous inulin hydrolysis [J]. Biocatal. Agric. Biotechnol., 2013, 2(2): 96-101. |
| 16 | CATANA R, FERREIRA B S, CABRAL J M S, et al.. Immobilization of inulinase for sucrose hydrolysis [J]. Food. Chem., 2005, 91(3): 517-520. |
| 17 | FISCHER C, KLEINSCHMIDT T. Synthesis of galactooligosaccharides in milk and whey: a review[J]. Comp. Rev. Food Sci. Food Saf., 2018, 17(3): 678-697. |
| 18 | GILLE D, WALTHER B, BADERTSCHER R, et al.. Detection of lactose in products with low lactose content [J]. Int. Dairy. J., 2018, 83: 17-19. |
| 19 | WON K, KIM S, KIM K J, et al.. Optimization of lipase entrapment in Ca-alginate gel beads [J]. Proc. Biochem., 2005, 40(6): 2149-2154. |
| 20 | CHIANG C J, HSIAU L T, LEE W C. Immobilization of cell-associated enzymes by entrapment in polymethacrylamide beads[J]. Biotechnol. Tech., 1997, 11(2): 121-125. |
| 21 | XU F, ORUNA-CONCHA M J, ELMORE J S. The use of asparaginase to reduce acrylamide levels in cooked food[J]. Food Chem., 2016, 210: 163-171. |
| 22 | SUJOY B, Enzymology APARNA A., immobilization and applications of urease enzyme [J]. Int. Res. J. Biol. Sci., 2013, 2(6): 2278-3202. |
| 23 | CABRERA M P, FONSECA T F, DE SOUZA R V B, et al.. Polyaniline-coated magnetic diatomite nanoparticles as a matrix for immobilizing enzymes[J]. Appl. Surf. Sci., 2018, 457: 21-29. |
| 24 | SPAHN C, MINTEER S. Enzyme immobilization in biotechnology [J]. Recent Pat. Eng., 2008, 2(3): 195-200. |
| 25 | MOHAMAD N R, MARZUKI N H, BUANG N A, et al.. An overview of technologies for immobilization of enzymes and surface analysis techniques for immobilized enzymes[J]. Biotechnol. Biotechnol. Equip., 2015, 29(2): 205-220. |
| 26 | PRYAKHIN A N, CHUKHRAI E S. Glucose 6-phosphate dehydrogenase immobilized by adsorption on silica gel solid supports [J]. Vestn. Mosk. Univ., 1977, 18(1): 6. |
| 27 | SHEN Q, YANG R, HUA X, et al.. Gelatin-templated biomimetic calcification for β-galactosidase immobilization [J]. Proc. Biochem., 2011, 46(8): 1565-1571. |
| 28 | GORECKA E, JASTRZEBSKA M. Carriers-a review [J]. Biotechnol. Food. Sci., 2011, 75: 27-34. |
| 29 | KNEZEVIC Z, MILOSAVIC N, BEZBRADICA D, et al.. Immobilization of lipase from Candida rugosa on Eupergit C supports by covalent attachment [J]. Biochem. Eng. J., 2006, 30(3):269-278. |
| 30 | YANG Y, PORTE M C, MARMEY P, et al.. Covalent bonding of collagen on poly(L-lactic acid) by gamma irradiation [J]. Nucl. Instrum. Methods. Phys. Res. Sect. B., 2003, 207(2): 165-174. |
| 31 | SIGURDARDOTTIR S B, LEHMANN J, OVTAR S, et al.. Enzyme immobilization on inorganic surfaces for membrane reactor applications: mass transfer challenges, enzyme leakage and reuse of materials [J]. Adv. Synth. Catal., 2018, 360(14): 2578-2607. |
| 32 | OVSEJEVI K, MANTA C, BATISTA-VIERA F. Reversible covalent immobilization of enzymes via disulfide bonds[J]. Meth. Mol. Biol., 2013, 1051: 89-116. |
| 33 | COSTA S A, AZEVEDO H S, REIS R L. Enzyme immobilization in biodegradable polymers for biomedical applications [M]. Crc Press Taylor Francis Group, 2005: 957-979. |
| 34 | TEE B L, KALETUNÇ G. Immobilization of a thermostable alpha-amylase by covalent binding to an alginate matrix increases high temperature usability[J]. Biotechnol. Prog., 2009, 25(2): 436-445. |
| 35 | RUIZ E, BUSTO M D, RAMOS-GOMEZ S, et al.. Encapsulation of glucose oxidase in alginate hollow beads to reduce the fermentable sugars in simulated musts [J]. Food. Biosci., 2018, 24: 67-72. |
| 36 | OLAJUYIGBE F M, ADETUYI O Y, FATOKUN C O. Characterization of free and immobilized laccase from Cyberlindnera fabianii and application in degradation of bisphenol A[J]. Int. J. Biol. Macromol., 2019, 125: 856-864. |
| 37 | MARTIN M C, LOPEZ O V, CIOLINO A E, et al.. Immobilization of enological pectinase in calcium alginate hydrogels: a potential biocatalyst for winemaking [J]. Biocatal. Agric. Biotechnol., 2019, 18: 101091. |
| 38 | BAYRAMOGLU Z, AKBULUT U, SUNGUR S. Immobilization of alpha-amylase into photographic gelatin by chemical cross-linking[J]. Biomaterials, 1992, 13(10): 704-708. |
| 39 | BEDADE D K, SUTAR Y B, SINGHAL R S. Chitosan coated calcium alginate beads for covalent immobilization of acrylamidase: process parameters and removal of acrylamide from coffee[J]. Food Chem., 2019, 275: 95-104. |
| 40 | SHUKLA R J, SINGH S P. Structural and catalytic properties of immobilized α-amylase from Laceyella sacchari TSI-2[J]. Int. J. Biol. Macromol., 2016, 85: 208-216. |
| 41 | KIKANI B A, PANDEY S, SINGH S P. Immobilization of the α-amylase of Bacillus amyloliquifaciens TSWK1-1 for the improved biocatalytic properties and solvent tolerance[J]. Bioproc. Biosyst. Eng., 2013, 36(5): 567-577. |
| 42 | SINGH R S, DHALIWAL R, PURI M. Production of high fructose syrup from Asparagus inulin using immobilized exoinulinase from Kluyveromyces marxianus YS-1[J]. J. Ind. Microbiol. Biotechnol., 2007, 34(10): 649-655. |
| 43 | GUPTA A K, RATHORE P, KAUR N, et al.. Production, thermal stability and immobilisation of inulinase from Fusarium oxysporum [J]. J. Chem. Technol. Biotechnol., 1990, 47(3): 245-257. |
| 44 | ANES J, FERNANDES P. Towards the continuous production of fructose syrups from inulin using inulinase entrapped in PVA-based particles [J]. Biocatal. Agric. Biotechnol.. 2014, 3(4): 296-302. |
| 45 | JOVANOVIC-MALINOVSKA R, FERNANDES P, WINKELHAUSEN E, et al.. Galacto-oligosaccharides synthesis from lactose and whey by β-galactosidase immobilized in PVA[J]. Appl. Biochem. Biotechnol., 2012, 168(5): 1197-1211. |
| 46 | REBRO M, ROSENBERG M, MLICHOVA Z, et al.. A simple entrapment of glucoamylase into LentiKats as an efficient catalyst for maltodextrin hydrolysis [J]. Enzyme. Microb. Technol., 2006, 39(4): 800-804. |
| 47 | LYU J, LI Z, MEN J, et al.. Covalent immobilization of Bacillus subtilis lipase A on Fe3O4 nanoparticles by aldehyde tag: an ideal immobilization with minimal chemical modification [J]. Proc. Biochem., 2019, 81: 63-69. |
| 48 | WANG J, MENG G, TAO K, et al.. Immobilization of lipases on alkyl silane modified magnetic nanoparticles: effect of alkyl chain length on enzyme activity[J/OL]. PLoS One, 2012, 7(8): e43478[2024-04-15]. . |
| 49 | TORABIZADEH H, MAHMOUDI A. Inulin hydrolysis by inulinase immobilized covalently on magnetic nanoparticles prepared with wheat gluten hydrolysates[J]. Biotechnol. Rep. Amst., 2018, 17: 97-103. |
| 50 | GOEL A, SINHA R, KHARE S K. Immobilization of A. oryzae β-galactosidase on silica nanoparticles: development of an effective biosensor for determination of lactose in milk whey [J]. Recent Adv. Appl. Microbiol., 2017, 1: 3-18. |
| 51 | BENIWAL A, SAINI P, KOKKILIGADDA A, et al.. Use of silicon dioxide nanoparticles for β-galactosidase immobilization and modulated ethanol production by co-immobilized K. marxianus and S. cerevisiae in deproteinized cheese whey [J]. LWT-Food. Sci. Technol., 2018, 87: 553-561. |
| 52 | HOSSEINIPOUR S L, KHIABANI M S, HAMISHEHKAR H, et al.. Enhanced stability and catalytic activity of immobilized α-amylase on modified Fe3O4 nanoparticles for potential application in food industries[J/OL]. J. Nanopart. Res., 2015, 17(9): 382[2024-04-15]. . |
| 53 | ANSARI S A, SATAR R, ALAM F, et al.. Cost effective surface functionalization of silver nanoparticles for high yield immobilization of Aspergillus oryzae β-galactosidase and its application in lactose hydrolysis [J]. Proc. Biochem., 2012, 47(12): 2427-2433. |
| 54 | YANG Z, SI S, ZHANG C. Study on the activity and stability of urease immobilized onto nanoporous alumina membranes [J]. Microporous Mesoporous Mater., 2008, 111(1-3): 359-366. |
| 55 | MAGNAN E, CATARINO I, PAOLUCCI-JEANJEAN D, et al.. Immobilization of lipase on a ceramic membrane: activity and stability [J]. J. Membr. Sci., 2004, 241(1): 161-166. |
| 56 | BERNAL C, SIERRA L, MESA M. Improvement of thermal stability of β-galactosidase from Bacillus circulans by multipoint covalent immobilization in hierarchical macro-mesoporous silica [J]. J. Mol. Catal. B Enzym., 2012, 84: 166-172. |
| 57 | RICARDI N C, DE MENEZES E W, VALMIR BENVENUTTI E, et al.. Highly stable novel silica/chitosan support for β-galactosidase immobilization for application in dairy technology[J]. Food Chem., 2018, 246: 343-350. |
| 58 | TRAFFANO-SCHIFFO M V, CASTRO-GIRALDEZ M, et al.. Encapsulation of lactase in Ca(II)-alginate beads: Effect of stabilizers and drying methods [J]. Food. Res. Int., 2017, 100(Pt 1): 296-303. |
| 59 | SHVETSOVA S V, SHABALIN K A, BOBROV K S, et al.. Characterization of a new α-l-fucosidase isolated from Fusarium proliferatum LE1 that is regioselective to α-(1 → 4)-l-fucosidic linkage in the hydrolysis of α-l-fucobiosides[J]. Biochimie, 2017, 132: 54-65. |
| 60 | RASPOPOVA E A, KRASNOSHTANOVA A A. Characterizing the properties and evaluating the efficiency of biocatalysts based on immobilized fungal amylase[J]. Catal. Ind., 2016, 8(1): 75-80. |
| 61 | SIRISHA V L, JAIN A, JAIN A. Enzyme immobilization: an overview on methods, support material, and applications of immobilized enzymes[J]. Adv. Food Nutr. Res., 2016, 79: 179-211. |
| 62 | ROBINSON P J, DUNNILL P, LILLY M D. The properties of magnetic supports in relation to immobilized enzyme reactors [J]. Biotechnol. Bioeng., 1973, 15(3): 603-606. |
| 63 | VERMA M L, BARROW C J, PURI M. Nanobiotechnology as a novel paradigm for enzyme immobilisation and stabilisation with potential applications in biodiesel production[J]. Appl. Microbiol. Biotechnol., 2013, 97(1): 23-39. |
| 64 | LIU C, HONDA H, OHSHIMA A, et al.. Development of chitosan-magnetite aggregates containing Nitrosomonas europaea cells for nitrification enhancement[J]. J. Biosci. Bioeng., 2000, 89(5): 420-425. |
| 65 | CARLSSON N, GUSTAFSSON H, THÖRN C, et al.. Enzymes immobilized in mesoporous silica: a physical-chemical perspective[J]. Adv. Colloid Interface Sci., 2014, 205: 339-360. |
| 66 | HEILMANN A, TEUSCHER N, KIESOW A, et al.. Nanoporous aluminum oxide as a novel support material for enzyme biosensors[J]. J. Nanosci. Nanotechnol., 2003, 3(5): 375-379. |
| 67 | ASHTARI K, KHAJEH K, FASIHI J, et al.. Silica-encapsulated magnetic nanoparticles: enzyme immobilization and cytotoxic study[J]. Int. J. Biol. Macromol., 2012, 50(4): 1063-1069. |
| 68 | ARRUEBO M, FERNANDEZ-PACHECO R, IBARRA M R, et al. Magnetic nanoparticles for drug delivery [J]. Nano. Today, 2007, 2(3): 22-32. |
| 69 | FRAILE-GUTIÉRREZ I, IGLESIAS S, ACOSTA N, et al.. Chitosan-based oral hydrogel formulations of β-galactosidase to improve enzyme supplementation therapy for lactose intolerance[J/OL]. Int. J. Biol. Macromol., 2024, 255: 127755[2024-04-15]. . |
| 70 | ZHAO H, CUI Q, SHAH V, et al.. Enhancement of glucose isomerase activity by immobilizing on silica/chitosan hybrid microspheres [J]. J. Mol. Catal. B Enzym., 2016,126:18-23. |
| 71 | KAMANIN S S, ARLYAPOV V A, ROGOVA T V, et al.. Screen-printed electrodes modified with glucose oxidase immobilized in hybrid organosilicon sol-gel matrix[J]. Appl. Biochem. Microbiol., 2014, 50(9): 835-841. |
| 72 | REN S, LI C, JIAO X, et al.. Recent progress in multienzymes co-immobilization and multienzyme system applications [J]. Chem. Eng. J., 2019, 373: 1254-1278. |
| 73 | RODRIGUES R C, ORTIZ C, BERENGUER-MURCIA Á, et al.. Modifying enzyme activity and selectivity by immobilization[J]. Chem. Soc. Rev., 2013, 42(15): 6290-6307. |
| [1] | Xinran CHENG, Weiyong ZONG, Wenfang DOU. Research on the Synthesis of Cinnamyl Alcohol Glycosylated Derivatives Based on Immobilized Enzyme Method [J]. Current Biotechnology, 2025, 15(1): 110-118. |
| [2] | Xiaoni HOU, Mingdong LIU, Hao LYU, Deping YE, Lixia MA, Lihua ZHOU. Research Progress on Measuring Technology of Bio-enzyme Activity [J]. Current Biotechnology, 2025, 15(1): 58-66. |
| [3] | Xiaomin LIU, Ting LU, Yong LI, Meng WANG, Baokun ZHU, Wei ZHANG. The Impact of Enzyme Treatment on Yeast Fermentation of Tobacco [J]. Current Biotechnology, 2025, 15(1): 93-101. |
| [4] | Zhenyu WANG, Wenchao LU, Kangrong ZHONG, Yongjian GUAN, Zhen WANG, Chao CHEN. Preparation of Chondroitin Sulfate and Collagen Peptide of Sturgeon by Multi-enzyme Step-by-step Enzymatic Hydrolysis Under the Condition of pH Gradient [J]. Current Biotechnology, 2023, 13(6): 934-939. |
| [5] | Jie HAO, Xuanwen LI, Bao ZHANG, Chao ZHENG, Zhikang SUN, Qiang JI, Na WU, Han WU, Liqun LI. Application Progress of Cellulase in Tobacco [J]. Current Biotechnology, 2023, 13(2): 166-173. |
| [6] | Zhekang JIA, Xinran CHENG, Wenfang DOU. Cascade Catalysis of Glycosyltransferase and Sucrose Synthase to Produce Astragalin [J]. Current Biotechnology, 2023, 13(2): 247-256. |
| [7] | Ruiju MIAO, Zundan DING, Jian TIAN, Hongbing ZHANG, Feifei GUAN. Research Advances on Traditional and Intelligent Molecular Design of PET Hydrolases [J]. Current Biotechnology, 2023, 13(1): 46-54. |
| [8] | Yifei SONG, Fei XIE, Chen MA, Xuemei MA. Research Progress on Hydrogenase Activity in Higher Plants [J]. Current Biotechnology, 2022, 12(4): 481-489. |
| [9] | Haichao LYU, Zhekang JIA, Wen ZHANG, Liwen JIANG, Yuwen CHAO, Wenfang DOU. Study on Uridine Diphosphate Sugar Synthesis by Immobilized Enzyme [J]. Current Biotechnology, 2022, 12(2): 270-280. |
| [10] | Wenjing ZHANG, Ye TONG, Xiwen YANG, Yanjin CAO, Jidong WEI. Screening and Optimization of Highyield Neutral Proteaseproducing Strains and Pilot Scaleup [J]. Current Biotechnology, 2022, 12(1): 112-119. |
| [11] | Wanjie WANG, Nanzhu CHEN, Haisheng HAO, Xueming ZHAO, Huabin ZHU, Weihua DU. Research Progress of Histone Methyltransferases ASH2 [J]. Current Biotechnology, 2022, 12(1): 27-35. |
| [12] | Yage ZHANG, Yu PANG, Wei ZHANG, Zhengfu ZHOU. Global Patent Analysis of Lipase Development Trends [J]. Current Biotechnology, 2021, 11(6): 749-757. |
| [13] | Hui SUN, Chunyi ZHANG, Ling JIANG. Research Progress on Regulation of Coenzyme Ⅰ Metabolism [J]. Current Biotechnology, 2021, 11(4): 526-534. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||