Current Biotechnology ›› 2025, Vol. 15 ›› Issue (3): 372-379.DOI: 10.19586/j.2095-2341.2025.0001
• Reviews • Previous Articles Next Articles
Wanwan LYU1,2(
), Lin ZHENG2(
), Hongying PANG2, Hongbo GAO1(
), Hongzhi WANG2(
)
Received:2025-01-03
Accepted:2025-03-10
Online:2025-05-25
Published:2025-07-01
Contact:
Hongbo GAO,Hongzhi WANG
吕婉婉1,2(
), 郑林2(
), 庞红盈2, 高宏波1(
), 王宏芝2(
)
通讯作者:
高宏波,王宏芝
作者简介:吕婉婉E-mail: 2517991628@qq.com;基金资助:CLC Number:
Wanwan LYU, Lin ZHENG, Hongying PANG, Hongbo GAO, Hongzhi WANG. Research Advances on the Mechanism of Root Suckering in Poplar[J]. Current Biotechnology, 2025, 15(3): 372-379.
吕婉婉, 郑林, 庞红盈, 高宏波, 王宏芝. 杨树根蘖苗发生机理研究进展[J]. 生物技术进展, 2025, 15(3): 372-379.
| 1 | 席本野.杨树根系形态、分布、动态特征及其吸水特性[J].北京林业大学学报,2019,41(12):37-49. |
| XI B Y. Morphology, distribution, dynamic characteristics of poplar roots and its water uptake habits[J]. J. Beijing For. Univ., 2019, 41(12): 37-49. | |
| 2 | 康向阳.新一轮毛白杨遗传改良策略的思考和实践[J].北京林业大学学报,2016,38(7):1-8. |
| KANG X Y. Thinking and practices for strategy on a new round genetic improvement of Populus tomentosa [J]. J. Beijing For. Univ., 2016, 38(7): 1-8. | |
| 3 | 李占民,王泽民,王志彦,等.河北平原速生杨根蘖林培育技术试验研究[J].河北林业科技,2013(3):3-5. |
| LI Z M, WANG Z M, WANG Z Y, et al.. Experimental study on cultivation techniques of fast-growing poplar root-tiller forest in Hebei plain[J]. J. Hebei For. Sci. Technol., 2013(3): 3-5. | |
| 4 | 杨海潮.速生杨根蘖林培育技术[J].现代农村科技,2021(7):39-40. |
| 5 | 方升佐,徐锡增,吕士行,等.杨树萌芽更新及持续生产力[J].南京林业大学学报,2000,24(4):43-48. |
| FANG S Z, XU X Z, LYU S X, et al.. Coppicing techniques of poplars and sustainable production[J]. J. Nanjing For. Univ., 2000, 24(4): 43-48. | |
| 6 | 王力刚,温丽霞,赵岭,等.半干旱风沙区杨树林带萌蘖更新综合技术[J].防护林科技,2009(6):110-112. |
| WANG L G, WEN L X, ZHAO L, et al.. Comprehensive matching technology for sprouting & rejuvenation of poplar plantation in semiarid sandy area[J]. Prot. For. Sci. Technol., 2009(6): 110-112. | |
| 7 | FREY B R, LIEFFERS V J, LANDHÄUSSER S M, et al.. An analysis of sucker regeneration of trembling aspen[J]. Can. J. For. Res., 2003, 33(7): 1169-1179. |
| 8 | 李霞,宋云平,曹大学,等.促进山杨天然更新技术[J].吉林林业科技,2000,29(6):41-44. |
| LI X, SONG Y P, CAO D X, et al.. Accelerating measures on natural regeneration of Populus davidiana dode[J]. J. Jilin For. Sci. Technol., 2000, 29(6): 41-44. | |
| 9 | 朱之悌,张志毅,赵勇刚.毛白杨优树快速繁殖方法的研究[J].北京林业大学学报,1986,8(4):1-17. |
| ZHU Z T, ZHANG Z Y, ZHAO Y G. Studies on a rapid method for vegetative propagation of popuius tomentosa[J]. J. Beijing For. Univ., 1986, 8(4): 1-17. | |
| 10 | SCHIER G A. Origin and development of aspen root suckers[J]. Can. J. For. Res., 1973, 3(1): 45-53. |
| 11 | 王铁梅.苜蓿根蘖性状发生及其调节机制研究[D].北京:北京林业大学,2008. |
| 12 | HEINRICHS D H. Genetic variability within and correlations between characters of alfalfa polycross progenies[J]. Can. J. Genet. Cytol., 1964, 6(4): 522-528. |
| 13 | POLEGRI L, PECETTI L, PIANO E, et al.. Identification of AFLPs co-segregating with the creeping-rootedness trait in lucerne (Medicago sativa L. complex)[J]. Mol. Breed., 2011, 28(1): 91-103. |
| 14 | SCHIER G A, ZASADA J C. Role of carbohydrate reserves in the development of root suckers in Populustremuloides [J]. Can. J. For. Res., 1973, 3(2): 243-250. |
| 15 | 曹德昌,李景文,陈维强,等.额济纳绿洲不同林隙胡杨根蘖的发生特征[J].生态学报,2009,29(4):1954-1961. |
| CAO D C, LI J W, CHEN W Q, et al.. Development and growth of root suckers of Populus euphratica in different forest gaps in Ejina oasis [J]. Acta Ecol. Sin., 2009, 29(4): 1954-1961. | |
| 16 | 王子康,焦阿永,凌红波,等.不同灌溉模式下胡杨断根处理根蘖繁殖特征[J].干旱区研究,2022,39(4):1133-1142. |
| WANG Z K, JIAO A Y, LING H B, et al.. Characteristics of Populus euphratica root under various irrigation modes[J]. Arid Zone Res., 2022, 39(4): 1133-1142. | |
| 17 | MAINI J S, HORTON K W. Vegetative propagation of Populus spp. i. influence of temperature on formation and initial growth of aspen suckers[J]. Can. J. Bot., 1966, 44(9): 1183-1189. |
| 18 | GIFFORD G. The influence of growth media, temperatures, and light intensities on aspen root and top growth[J]. Rev. Bras. Enferm., 1967, 27(2): 18-24. |
| 19 | SCHIER G A, JONES J R, WINOKUR R P. Vegetative regeneration in aspen[C]. Wetl. Ecol. Manag., 1985. |
| 20 | HUNGERFORD R D. Soil temperatures and suckering in burned and unburned aspen stands[M]. United States of America: Department of Agriculture, Forest Service, Intermountain Research Station, 1988. |
| 21 | BARTOS D L, MUEGGLER W F. Early succession in aspen communities following fire in western Wyoming[J/OL]. J. Range Manag., 1981, 34(4): 315[2025-03-10]. . |
| 22 | BROWN J K, DEBYLE N V. Fire damage, mortality, and suckering in aspen[J]. Can. J. For. Res., 1987, 17(9): 1100-1109. |
| 23 | CLEVE K V, DYRNESS C T. Effects of forest-floor disturbance on soil-solution nutrient composition in a black spruce ecosystem[J]. Can. J. For. Res., 1983, 13(5): 894-902. |
| 24 | FARMER R E. Aspen root sucker formation and apical dominance[J]. For. Sci., 1962, 8(4): 403-410. |
| 25 | ELIASSON L. Growth regulators in Populus tremula [J]. Physiol. Plant, 1971, 25(1): 118-121. |
| 26 | STENEKER G A. The size of trembling aspen (Populus tremuloides michx.) clones in Manitoba[J]. Can. J. For. Res., 1973, 3(4): 472-478. |
| 27 | LUSCHNIG C, FRIML J. Over 25 years of decrypting PIN-mediated plant development[J/OL]. Nat. Commun., 2024, 15(1): 9904[2025-03-10]. . |
| 28 | UNG K L, WINKLER M, SCHULZ L, et al.. Structures and mechanism of the plant PIN-FORMED auxin transporter[J]. Nature, 2022, 609(7927): 605-610. |
| 29 | ZHANG K, NOVAK O, WEI Z, et al.. Arabidopsis ABCG14 protein controls the acropetal translocation of root-synthesized cytokinins[J/OL]. Nat. Commun., 2014, 5: 3274[2025-03-06]. . |
| 30 | BEVERIDGE C A, MURFET I C, KERHOAS L, et al.. The shoot controls zeatin riboside export from pea roots. Evidence from the branching mutant rms4 [J]. Plant J., 1997, 11(2): 339-345. |
| 31 | SCHIER G A. Physiological research on adventitious shoot development in aspen roots[M]. United States of America: Department of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station, 1981. |
| 32 | SCHIER G A. Promotion of sucker development on Populustremuloides root cuttings by an antiauxin[J]. Can. J. For. Res., 1975, 5(2): 338-340. |
| 33 | LI W, ZHAI L, STRAUSS S H, et al.. Transgenic reduction of cytokinin levels in roots inhibits root-sprouting in Populus [J]. Plant Physiol., 2019, 180(4): 1788-1792. |
| 34 | GUO L, SHAO X, XUE P, et al.. Root sprouting ability and growth dynamics of the rootsuckers of Emmenopterys henryi, a rare and endangered plant endemic to China[J]. For. Ecol. Manag., 2017, 389: 35-45. |
| 35 | ATTA R, LAURENS L, BOUCHERON-DUBUISSON E, et al.. Pluripotency of Arabidopsis xylem pericycle underlies shoot regeneration from root and hypocotyl explants grown in vitro [J]. Plant J., 2009, 57(4): 626-644. |
| 36 | WANG X, MÄKILÄ R, MÄHÖNEN A P. From procambium patterning to cambium activation and maintenance in the Arabidopsis root[J/OL]. Curr. Opin. Plant Biol., 2023, 75: 102404[2025-03-10]. . |
| 37 | CKURSHUMOVA W, SMIRNOVA T, MARCOS D, et al.. Irrepressible MONOPTEROS/ARF5 promotes de novo shoot formation[J]. New Phytol., 2014, 204(3): 556-566. |
| 38 | ZHAI N, XU L. Pluripotency acquisition in the middle cell layer of callus is required for organ regeneration[J]. Nat. Plants, 2021, 7(11): 1453-1460. |
| 39 | OKADA K, UEDA J, KOMAKI M K, et al.. Requirement of the auxin polar transport system in early stages of Arabidopsis floral bud formation[J]. Plant Cell, 1991, 3(7): 677-684. |
| 40 | REINHARDT D, MANDEL T, KUHLEMEIER C. Auxin regulates the initiation and radial position of plant lateral organs[J]. Plant Cell, 2000, 12(4): 507-518. |
| 41 | CARDOSO H, PEIXE A, BELLINI C, et al.. Editorial: advances on the biological mechanisms involved in adventitious root formation: from signaling to morphogenesis[J/OL]. Plant Sci., 2022, 13: 867651[2025-03-10]. . |
| 42 | SUGIMOTO K, JIAO Y, MEYEROWITZ E M. Arabidopsis regeneration from multiple tissues occurs via a root development pathway[J]. Dev. Cell, 2010, 18(3): 463-471. |
| 43 | IKEUCHI M, SUGIMOTO K, IWASE A. Plant callus: mechanisms of induction and repression[J]. Plant Cell, 2013, 25(9): 3159-3173. |
| 44 | FAN M, XU C, XU K, et al.. Lateral organ boundaries domain transcription factors direct callus formation in Arabidopsis regeneration[J]. Cell Res., 2012, 22(7): 1169-1180. |
| 45 | AIDA M, BEIS D, HEIDSTRA R, et al.. The PLETHORA genes mediate patterning of the Arabidopsis root stem cell niche[J]. Cell, 2004, 119(1): 109-120. |
| 46 | GALINHA C, HOFHUIS H, LUIJTEN M, et al.. PLETHORA proteins as dose-dependent master regulators of Arabidopsis root development[J]. Nature, 2007, 449(7165): 1053-1057. |
| 47 | KAREEM A, DURGAPRASAD K, SUGIMOTO K, et al.. PLETHORA genes control regeneration by a two-step mechanism[J]. Curr. Biol., 2015, 25(8): 1017-1030. |
| 48 | CHE P, LALL S, HOWELL S H. Developmental steps in acquiring competence for shoot development in Arabidopsis tissue culture[J]. Planta, 2007, 226(5): 1183-1194. |
| 49 | LIU J, SHENG L, XU Y, et al.. WOX11 and 12 are involved in the first-step cell fate transition during de novo root organogenesis in Arabidopsis [J]. Plant Cell, 2014, 26(3): 1081-1093. |
| 50 | LIU J, HU X, QIN P, et al.. The WOX11-LBD16 pathway promotes pluripotency acquisition in callus cells during de novo shoot regeneration in tissue culture[J]. Plant Cell Physiol., 2018, 59(4): 739-748. |
| 51 | LIU B, ZHANG J, YANG Z, et al.. PtWOX11 acts as master regulator conducting the expression of key transcription factors to induce de novo shoot organogenesis in poplar[J]. Plant Mol. Biol., 2018, 98(4): 389-406. |
| 52 | CHATFIELD S P, CAPRON R, SEVERINO A, et al.. Incipient stem cell niche conversion in tissue culture: using a systems approach to probe early events in WUSCHEL-dependent conversion of lateral root primordia into shoot meristems[J]. Plant J., 2013, 73(5): 798-813. |
| 53 | ZHANG T Q, LIAN H, ZHOU C M, et al.. A two-step model for de novo activation of WUSCHEL during plant shoot regeneration[J]. Plant Cell, 2017, 29(5): 1073-1087. |
| 54 | CHEN C, HU Y, IKEUCHI M, et al.. Plant regeneration in the new era: from molecular mechanisms to biotechnology applications[J]. Sci. China Life Sci., 2024, 67(7): 1338-1367. |
| 55 | LAUX T, MAYER K F, BERGER J, et al.. The WUSCHEL gene is required for shoot and floral meristem integrity in Arabidopsis [J]. Development, 1996, 122(1): 87-96. |
| 56 | GALLOIS J L, NORA F R, MIZUKAMI Y, et al.. WUSCHEL induces shoot stem cell activity and developmental plasticity in the root meristem[J]. Genes Dev., 2004, 18(4): 375-380. |
| 57 | DAI X, LIU Z, QIAO M, et al.. ARR12 promotes de novo shoot regeneration in Arabidopsis thaliana via activation of WUSCHEL expression[J]. J. Integr. Plant Biol., 2017, 59(10): 747-758. |
| 58 | MENG W J, CHENG Z J, SANG Y L, et al.. Type-B ARABIDOPSIS RESPONSE REGULATORs specify the shoot stem cell niche by dual regulation of WUSCHEL[J]. Plant Cell, 2017, 29(6): 1357-1372. |
| 59 | CHENG Z J, WANG L, SUN W, et al.. Pattern of auxin and cytokinin responses for shoot meristem induction results from the regulation of cytokinin biosynthesis by Auxin response factor3[J]. Plant Physiol., 2012, 161(1): 240-251. |
| 60 | KYOZUKA J. Control of shoot and root meristem function by cytokinin[J]. Curr. Opin. Plant Biol., 2007, 10(5): 442-446. |
| 61 | YADAV R K, GIRKE T, PASALA S, et al.. Gene expression map of the Arabidopsis shoot apical meristem stem cell niche[J]. Proc. Natl. Acad. Sci. USA, 2009, 106(12): 4941-4946. |
| 62 | BARTRINA I, OTTO E, STRNAD M, et al.. Cytokinin regulates the activity of reproductive meristems, flower organ size, ovule formation, and thus seed yield in Arabidopsis thaliana [J]. Plant Cell, 2011, 23(1): 69-80. |
| 63 | CHICKARMANE V S, GORDON S P, TARR P T, et al.. Cytokinin signaling as a positional cue for patterning the apical-basal axis of the growing Arabidopsis shoot meristem[J]. Proc. Natl. Acad. Sci. USA, 2012, 109(10): 4002-4007. |
| [1] | Yin ZHANG, Zhiming LI, Shengqian CHAO, Yifan CHEN, Beibei LYU. Effect of Mineral Elements and Phytohormones on the Growth of Morchella exima [J]. Current Biotechnology, 2024, 14(6): 947-951. |
| [2] | Dezheng YANG, Huixian FU, Suqin XIAO, Lingyun LEI, Tianshi LI, Zaiquan CHENG, Li LIU. Research Progress on Genetic Basis and Molecular Regulation Mechanism of Rice Plant Architecture [J]. Current Biotechnology, 2024, 14(3): 349-359. |
| [3] | ZUO Weixing1, ZHANG Zhifei2, LIU Zhimin3*, WANG Chaoqun4*. Review on Molecular Components Participating Negative Feedback Regulation in the Hypothalamus-pituitary-thyroid Axis [J]. Curr. Biotech., 2017, 7(6): 601-607. |
| [4] | WANG Ming-peng1, CHEN Lei2, LIU Zheng-yi2, QIN Song2*, YAN Pei-sheng1*. Progress and Prospect of Seaweed Fertilizer [J]. Curr. Biotech., 2015, 5(3): 158-163. |
| [5] | CHANG Liang, LI Chen-hui, MA Zhi-jun, ZHAO Jing, GAO Jian*. Progress on Glycoprotein Hormones [J]. Curr. Biotech., 2015, 5(1): 22-28. |
| [6] | YANG Shu-qiao, WANG Zhi-an, ZHANG An-hong, XU Qi, XIAO Juan-Li, LUO Xiao-li*. Cloning and Expression Analysis of a WRKY Gene GhWRKY25 in Upland Cotton [J]. Curr. Biotech., 2014, 4(4): 274-279. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||