Current Biotechnology ›› 2025, Vol. 15 ›› Issue (3): 365-371.DOI: 10.19586/j.2095-2341.2024.0193
• Reviews • Next Articles
					
													Haojie LI( ), Xinlu LI, Kun WANG, Changrong GE(
), Xinlu LI, Kun WANG, Changrong GE( )
)
												  
						
						
						
					
				
Received:2024-12-06
															
							
															
							
																	Accepted:2025-02-12
															
							
																	Online:2025-05-25
															
							
																	Published:2025-07-01
															
						Contact:
								Changrong GE   
													通讯作者:
					葛长荣
							作者简介:李浩杰 E-mail: 1322806263@qq.com;
				
							基金资助:CLC Number:
Haojie LI, Xinlu LI, Kun WANG, Changrong GE. Research and Application Progress of Omics Technology in Meat Quality Evaluation[J]. Current Biotechnology, 2025, 15(3): 365-371.
李浩杰, 李鑫璐, 王坤, 葛长荣. 组学技术在肉品质评价中的研究与应用进展[J]. 生物技术进展, 2025, 15(3): 365-371.
Table 1 Omics technology and their research methods
| 1 | 张丽,许欣纯,罗威,等.鸡肉品质评价及影响因素研究进展[J].广东畜牧兽医科技,2022,47(6):26-33. | 
| ZHANG L, XU X C, LUO W, et al.. Research progress on evaluation and influence factors of chicken meat quality[J]. Guangdong J. Anim. Vet. Sci., 2022, 47(6): 26-33. | |
| 2 | 巨晓军,刘一帆,章明,等.鸡肉品质性状评价指标与方法研究进展[J].中国家禽,2019,41(2):44-48. | 
| JU X J, LIU Y F, ZHANG M, et al.. Research progress on evaluation indices and methods of chicken meat quality[J]. China Poult., 2019, 41(2): 44-48. | |
| 3 | 杨晓东,魏萌,于豪杰,等.不同钙盐对牛肉品质影响初探[J].中国食品添加剂,2022,33(11):106-112. | 
| YANG X D, WEI M, YU H J, et al.. Effect of different calcium salt on beef quality[J]. China Food Addit., 2022, 33(11): 106-112. | |
| 4 | 刘永,丁贤群,佟荟全,等.云南无量山乌骨鸡肉品质物理指标比较分析[J].黑龙江畜牧兽医,2017(4):179-181+183. | 
| LIU Y, DING X Q, TONG H Q, et al.. Comparative analysis of physical indicators of meat quality in Wuliangshan black-bone chickens from Yunnan[J]. Heilongjiang Anim. Sci. Vet. Med., 2017(4): 179-181+183. | |
| 5 | 李同树,刘风民,尹逊河,等.鸡肉嫩度评定方法及其指标间的相关分析[J].畜牧兽医学报,2004,35(2):171-177. | 
| LI T S, LIU F M, YIN X H, et al.. The evaluation methods of chicken meat tenderness and their relationship[J]. Chin. J. Anim. Vet. Sci., 2004, 35(2): 171-177. | |
| 6 | SOUZA A C A H, TROSCHEL A S, MARQUARDT J P, et al.. Skeletal muscle adiposity, coronary microvascular dysfunction, and adverse cardiovascular outcomes[J]. Eur. Heart J., 2025, 46(12): 1112-1123. | 
| 7 | KALAKUNTLA S, NAGIREDDY N K, PANDA A K, et al.. Effect of dietary incorporation of n-3 polyunsaturated fatty acids rich oil sources on fatty acid profile, keeping quality and sensory attributes of broiler chicken meat[J]. Anim. Nutr., 2017, 3(4): 386-391. | 
| 8 | WANG C, HAN B. Twenty years of rice genomics research: From sequencing and functional genomics to quantitative genomics[J]. Mol. Plant, 2022, 15(4): 593-619. | 
| 9 | ALDRIDGE S, TEICHMANN S A. Single cell transcriptomics comes of age[J/OL]. Nat. Commun., 2020, 11(1): 4307[2025-02-27]. . | 
| 10 | ANDERSON A C, YANAI I, YATES L R, et al.. Spatial transcriptomics[J]. Cancer Cell, 2022, 40(9): 895-900. | 
| 11 | GONZÁLEZ-GOMARIZ J, GURUCEAGA E, LÓPEZ-SÁNCHEZ M, et al.. Proteogenomics in the context of the human proteome project (HPP)[J]. Expert Rev. Proteomics, 2019, 16(3): 267-275. | 
| 12 | LIU X, LOCASALE J W. Metabolomics: a primer[J]. Trends Biochem. Sci., 2017, 42(4): 274-284. | 
| 13 | ZHANG Y, SHI J, TAN C, et al.. Oilomics: an important branch of foodomics dealing with oil science and technology[J/OL]. Food Res. Int., 2023, 173(Pt 1): 113301[2025-02-27]. . | 
| 14 | MUNEKATA P E, PATEIRO M, LÓPEZ-PEDROUSO M, et al.. Foodomics in meat quality[J]. Curr. Opin. Food Sci., 2021, 38: 79-85. | 
| 15 | MAHATO D K, KAMLE M, PANDHI S, et al.. Foodomics: a sustainable approach for the specific nutrition and diets for human health[J/OL]. Food Chem., 2024, 24: 101872[2025-02-27]. . | 
| 16 | CHEN R, LEI S, JIANG T, et al.. Roles of lncRNAs and circRNAs in regulating skeletal muscle development[J/OL]. Acta Physiol., 2020, 228(2): e13356[2025-02-27]. . | 
| 17 | JUNG H J, LEE K P, SKWON K, et al.. microRNAs in skeletal muscle aging: current issues and perspectives[J]. J. Gerontol. A Biol. Sci. Med. Sci., 2019, 74(7): 1008-1014. | 
| 18 | WANG S, JIN J, XU Z, et al.. Functions and regulatory mechanisms of lncRNAs in skeletal myogenesis, muscle disease and meat production[J/OL]. Cells, 2019, 8(9): 1107[2025-02-27]. . | 
| 19 | FERNÁNDEZ-BARROSO M Á, CARABALLO C, SILIÓ L, et al.. Differences in the loin tenderness of Iberian pigs explained through dissimilarities in their transcriptome expression profile[J/OL]. Animals, 2020, 10(9): 0[2025-02-27]. . | 
| 20 | MUNIZ M M M, FONSECA L F S, DOS SANTOS SILVA D B, et al.. Identification of novel mRNA isoforms associated with meat tenderness using RNA sequencing data in beef cattle[J/OL]. Meat Sci., 2021, 173: 108378[2025-02-27]. . | 
| 21 | DAMON M, WYSZYNSKA-KOKO J, VINCENT A, et al.. Comparison of muscle transcriptome between pigs with divergent meat quality phenotypes identifies genes related to muscle metabolism and structure[J/OL]. PLoS ONE, 2012, 7(3): e33763[2025-02-27]. . | 
| 22 | MIAO X, LUO Q, QIN X, et al.. Genome-wide mRNA-seq profiling reveals predominant down-regulation of lipid metabolic processes in adipose tissues of Small Tail Han than Dorset sheep[J]. Biochem. Biophys. Res. Commun., 2015, 467(2): 413-420. | 
| 23 | JI C, LIU J, LUO R. Regulatory role of mitochondrial genes in the tenderisation of lamb meat during postmortem ageing[J]. Int. J. Food Sci. Technol., 2022, 57(6): 3544-3555. | 
| 24 | JORRÍN-NOVO J V, PASCUAL J, SÁNCHEZ-LUCAS R, et al.. Fourteen years of plant proteomics reflected in proteomics: moving from model species and 2DE-based approaches to orphan species and gel-free platforms[J]. Proteomics, 2015, 15(5-6): 1089-1112. | 
| 25 | HONG KWAN S, BAIE S, NAZRI ISMAIL M. Profiling of proteins and post translational modifications of Channa striatus dried meat[J]. Curr. Proteom., 2016, 13(1): 9-19. | 
| 26 | KWON E J, LEE H R, LEE J H, et al.. Identification of differentially expressed genes and pathways for risk stratification in HPV-associated cancers governing different anatomical sites[J/OL]. Front. Biosci., 2022, 27(1): 2[2025-02-27]. . | 
| 27 | GE K, YE P, YANG L, et al.. Comparison of slaughter performance, meat traits, serum lipid parameters and fat tissue between Chaohu ducks with high- and low-intramuscular fat content[J]. Anim. Biotechnol., 2020, 31(3): 245-255. | 
| 28 | DALLE ZOTTE A, GLEESON E, FRANCO D, et al.. Proximate composition, amino acid profile, and oxidative stability of slow-growing indigenous chickens compared with commercial broiler chickens[J/OL]. Foods, 2020, 9(5): 546[2025-02-27]. . | 
| 29 | GE Y, GAI K, LI Z, et al.. HPLC-QTRAP-MS-based metabolomics approach investigates the formation mechanisms of meat quality and flavor of Beijing-you chicken[J/OL]. Food Chem., 2023, 17: 100550[2025-02-27]. . | 
| 30 | LIU J, FU R, LIU R, et al.. Protein profiles for muscle development and intramuscular fat accumulation at different post-hatching ages in chickens[J/OL]. PLoS ONE, 2016, 11(8): e0159722[2025-02-27]. . | 
| 31 | ZHANG J, CAO J, GENG A, et al.. Comprehensive proteomic characterization of the pectoralis major at three chronological ages in Beijing-you chicken[J/OL]. Front. Physiol., 2021, 12: 658711[2025-02-27]. . | 
| 32 | 胡争艳,王军淋,吴平谷,等.蛋白质组学技术在肉类鉴别及肉质分析中的应用进展[J].生物技术进展,2018,8(3):206-213. | 
| HU Z Y, WANG J L, WU P G, et al.. Progress on application of proteomic technology in meat authentication and meat quality analysis[J]. Curr. Biotechnol., 2018, 8(3): 206-213. | |
| 33 | FACCHIANO A, HEIDER D, MUTARELLI M. Editorial: artificial intelligence and bioinformatics applications for omics and multi-omics studies[J/OL]. Front. Genet., 2024, 15: 1371473[2025-02-27]. . | 
| 34 | WANG B, WANG Y, ZUO S, et al.. Untargeted and targeted metabolomics profiling of muscle reveals enhanced meat quality in artificial pasture grazing Tan lambs via rescheduling the rumen bacterial community[J]. J. Agric. Food Chem., 2021, 69(2): 846-858. | 
| 35 | WANG J, XU Z, ZHANG H, et al.. Meat differentiation between pasture-fed and concentrate-fed sheep/goats by liquid chromatography quadrupole time-of-flight mass spectrometry combined with metabolomic and lipidomic profiling[J/OL]. Meat Sci., 2021, 173: 108374[2025-02-27]. . | 
| 36 | KIM D Y, KIM J M. Multi-omics integration strategies for animal epigenetic studies-a review[J]. Anim. Biosci., 2021, 34(8): 1271-1282. | 
| 37 | JUNG G T, KIM K P, KIM K. How to interpret and integrate multi-omics data at systems level[J]. Anim. Cells Syst., 2020, 24(1): 1-7. | 
| 38 | FONDI M, LIÒ P. Multi-omics and metabolic modelling pipelines: challenges and tools for systems microbiology[J]. Microbiol. Res., 2015, 171: 52-64. | 
| 39 | KATO H, TAKAHASHI S, SAITO K. Omics and integrated omics for the promotion of food and nutrition science[J]. J. Tradit. Complement. Med., 2011, 1(1): 25-30. | 
| 40 | PATHAK R R, DAVÉ V. Integrating omics technologies to study pulmonary physiology and pathology at the systems level[J]. Cell. Physiol. Biochem., 2014, 33(5): 1239-1260. | 
| 41 | PAN P, QIN Z, XIE W, et al.. Identification of differentially expressed genes in the longissimus dorsi muscle of Luchuan and duroc pigs by transcriptome sequencing[J/OL]. Genes, 2023, 14(1): 132[2025-02-27]. . | 
| 42 | MA D, YU Q, HEDRICK V E, et al.. Proteomic and metabolomic profiling reveals the involvement of apoptosis in meat quality characteristics of ovine M. longissimus from different callipyge genotypes[J/OL]. Meat Sci., 2020, 166: 108140[2025-02-27]. . | 
| 43 | WINDARSIH A, SURATNO, WARMIKO H D, et al.. Untargeted metabolomics and proteomics approach using liquid chromatography-orbitrap high resolution mass spectrometry to detect pork adulteration in Pangasius hypopthalmus meat[J/OL]. Food Chem., 2022, 386: 132856[2025-02-27]. . | 
| 44 | ZHANG X Y, YUAN Z H, LI F D, et al.. Integrating transcriptome and metabolome to identify key genes regulating important muscular flavour precursors in sheep[J/OL]. Animal, 2022, 16(12): 100679[2025-02-27]. . | 
| 45 | ZHAO Y, ZHANG Y, KHAS E, et al.. Transcriptome analysis reveals candidate genes of the synthesis of branched-chain fatty acids related to mutton flavor in the lamb liver using Allium mongolicum regel extract[J/OL]. J. Anim. Sci., 2022, 100(9): skac256[2025-02-27]. . | 
| 46 | CHEN B, YUE Y, LI J, et al.. Transcriptome-metabolome analysis reveals how sires affect meat quality in hybrid sheep populations[J/OL]. Front. Nutr., 2022, 9: 967985[2025-02-27]. . | 
| 47 | CUI X, YANG Y, ZHANG M, et al.. Transcriptomics and metabolomics analysis reveal the anti-oxidation and immune boosting effects of mulberry leaves in growing mutton sheep[J/OL]. Front. Immunol., 2022, 13: 1088850[2025-02-27]. . | 
| 48 | ZHANG Y, GUO Y, LUO Y, et al.. Integrated metabolomics and transcriptome revealed the effect of fermented Lycium barbarum residue promoting Ovis aries immunity[J/OL]. Front. Immunol., 2022, 13: 889436[2025-02-27]. . | 
| 49 | WU J, YANG D, GONG H, et al.. Multiple omics analysis reveals that high fiber diets promote gluconeogenesis and inhibit glycolysis in muscle[J/OL]. BMC Genomics, 2020, 21(1): 660[2025-02-27]. . | 
| 50 | BUCCITELLI C, SELBACH M. mRNAs, proteins and the emerging principles of gene expression control[J]. Nat. Rev. Genet., 2020, 21(10): 630-644. | 
| 51 | FORTELNY N, OVERALL C M, PAVLIDIS P, et al.. Can we predict protein from mRNA levels?[J/OL]. Nature, 2017, 547(7664): 19-20. | 
| 52 | SALOVSKA B, ZHU H, GANDHI T, et al.. Isoform-resolved correlation analysis between mRNA abundance regulation and protein level degradation[J/OL]. Mol. Syst. Biol., 2020, 16(3): e9170[2025-02-27]. . | 
| 53 | WU X, ZHOU X, CHU M, et al.. Whole transcriptome analyses and comparison reveal the metabolic differences between oxidative and glycolytic skeletal muscles of yak[J/OL]. Meat Sci., 2022, 194: 108948[2025-02-27]. . | 
| 54 | TAO Y F, QIANG J, HE J, et al.. Untargeted LC-MS metabolomics approach reveals metabolic changes in genetically improved farmed Tilapia (Oreochromis niloticus) with fatty liver induced by a high-fat diet[J]. Aquac. Res., 2021, 52(2): 724-735. | 
| 55 | LIU H, WEI B, TANG Q, et al.. Non-target metabolomics reveals the changes of small molecular substances in duck breast meat under different preservation time[J/OL]. Food Res. Int., 2022, 161: 111859[2025-02-27]. . | 
| [1] | Qin WEI, Danna HUANG, Lu CHEN, Cong WANG. Research Advances on Chemical Constituents, Pharmacological Effects, Extraction Analytical and Processing Techniques of Star Anise [J]. Current Biotechnology, 2025, 15(4): 587-596. | 
| [2] | Zhaohui CUI, Ling GUO, Xudong SHEN, Yi LIN, Lili ZHAI. Immunogenicity Formation Mechanism and Control Strategy of Biopharmaceuticals [J]. Current Biotechnology, 2025, 15(2): 212-219. | 
| [3] | Xiaoni HOU, Mingdong LIU, Hao LYU, Deping YE, Lixia MA, Lihua ZHOU. Research Progress on Measuring Technology of Bio-enzyme Activity [J]. Current Biotechnology, 2025, 15(1): 58-66. | 
| [4] | Xinze LIU, Lin FENG, Kaijing SUN, Ying SUN, Xue YANG, Guangzhe LI, Wei WU, Changbao CHEN, Yu LI, Xin JIN, Xilin WAN. Herbal Textual Research and Modern Pharmacological Analysis of Uyghur Medicine Fomes officinalis [J]. Current Biotechnology, 2024, 14(6): 920-928. | 
| [5] | Licun LIANG, Wenlong LIU, Xiaoqing LIU, Bin YAO, Huoqing HUANG, Haomeng YANG. The Effect of Chemical Reagents on the Efficiency of Gene Editing in Aspergillus tubingensis [J]. Current Biotechnology, 2024, 14(4): 586-593. | 
| [6] | Hangyu QI, Tingting DU, Quanxin GAO, Qiongying TANG, Guoliang YANG, Shaokui YI. Research Progress on Social Hierarchy of Shrimps and Crabs [J]. Current Biotechnology, 2023, 13(6): 827-836. | 
| [7] | Yuqi YANG, Xiuxia HE. Application of Rolling Circle Amplification Technique in Electrochemical Biosensors [J]. Current Biotechnology, 2023, 13(6): 863-867. | 
| [8] | Junkui ZHAO, Yongzhong LU. Research Progress of Cyanobacteria Cell Factories [J]. Current Biotechnology, 2023, 13(2): 174-180. | 
| [9] | Jie CHEN, Yongkang HUANG, Xi WANG. Application and Prospect of Synthetic Biology in the Field of New Chemical Materials [J]. Current Biotechnology, 2023, 13(1): 39-45. | 
| [10] | Ruixue SUN, Wei MI, Zihong YE. Research Advances in Protein Interactions Based on Mass Spectrometry [J]. Current Biotechnology, 2022, 12(2): 161-167. | 
| [11] | ZHANG Qingcui, SHI Yali*, LIU Anli, HU Jianhua, LI Yongli, SUN Yachao, HE Kexin, XIA Ting, BAO Yanbin. Research and Application Progress of Exocellulase [J]. Curr. Biotech., 2020, 10(5): 495-502. | 
| [12] | MA Xuan1, ZHANG Yangzi1, XU Wentao1,2*. Progress on Physicochemical Properties and Applications of Functional Nucleic Acid DNA Hydrogels [J]. Curr. Biotech., 2019, 9(6): 545-553. | 
| [13] | ZHANG Yukun1,2, AN Na2, LIU Weixiao2, WAN Yusong2, JIN Wujun2, LI Liang2*, ZHANG Xiao1*. Research Progress of DNA Sensors Based on Surface Plasmon Resonance and Electrochemical Combination [J]. Curr. Biotech., 2019, 9(6): 592-598. | 
| [14] | LIN Shenghao1, DU Zaihui1, ZHANG Xiujie2, HUANG Kunlun1,3, LIU Qingliang4, XU Wentao1,3*. Progress on Biosensors Based on Loop-mediated Isothermal Amplification [J]. Curr. Biotech., 2019, 9(6): 599-610. | 
| [15] | SU Yuan1, LI Shuting1, XU Wentao1,2*. Advances on the Application of Gas Biosensors [J]. Curr. Biotech., 2019, 9(6): 627-632. | 
| Viewed | ||||||
| Full text |  | |||||
| Abstract |  | |||||