Current Biotechnology ›› 2024, Vol. 14 ›› Issue (3): 349-359.DOI: 10.19586/j.2095-2341.2024.0011
• Reviews • Previous Articles Next Articles
Dezheng YANG1,2(
), Huixian FU3, Suqin XIAO2, Lingyun LEI1,2, Tianshi LI3, Zaiquan CHENG2, Li LIU2(
)
Received:2024-01-18
Accepted:2024-03-21
Online:2024-05-25
Published:2024-06-18
Contact:
Li LIU
杨得正1,2(
), 付惠仙3, 肖素勤2, 雷凌云1,2, 李天时3, 程在全2, 刘丽2(
)
通讯作者:
刘丽
作者简介:杨得正 E-mail: 17861510360@163.com;
基金资助:CLC Number:
Dezheng YANG, Huixian FU, Suqin XIAO, Lingyun LEI, Tianshi LI, Zaiquan CHENG, Li LIU. Research Progress on Genetic Basis and Molecular Regulation Mechanism of Rice Plant Architecture[J]. Current Biotechnology, 2024, 14(3): 349-359.
杨得正, 付惠仙, 肖素勤, 雷凌云, 李天时, 程在全, 刘丽. 水稻株型的遗传基础与分子调控机理研究进展[J]. 生物技术进展, 2024, 14(3): 349-359.
| 性状 | 亲本组合 | 群体类型 | 群体大小 | QTLs | 贡献率 | 株型性状 | 参考文献 |
|---|---|---|---|---|---|---|---|
| 株高 | IR24×Asominori | IAS/IAS | 132 | 8 | 5.64%~13.87% | 株高 | [ |
| 日本晴×泸恢99 | RIL/F8 | 188 | 3 | 1.08%~3.16% | 株高 | [ | |
| BG1×XLJ | RIL/F2 | 269 | 2 | 5.75% | 株高 | [ | |
| 沈农265×LTH | RIL/F2 | 126 | 4 | 11.30%~60.40% | 株高 | [ | |
| 嘉早17×D50 | RIL/F2:3 | 225 | 6 | 1.76%~15.34% | 株高 | [ | |
| 多亲本 | MAGIC | 440 | 5 | 3.39%~90.22% | 株高 | [ | |
| 龙稻5号×中优早8号 | RIL/F7 | 180 | 7 | 2.71%~36.98% | 株高 | [ | |
| 叶片 | Z481×日本晴 | RIL/F2 | 150 | 12 | 4.15%~89.81% | 剑叶长、宽、长宽比和叶面积 | [ |
| 汕优63 | RIL/F10 | 241 | 41 | 3.19%~26.23% | 剑叶、倒二叶、倒三叶 | [ | |
| 两优培九(LYP9) | RIL/F2 | 132 | 43 | 4.00%~24.00% | 剑叶大小 | [ | |
| 日本晴×9311 | RIL/F2 | 189 | 42 | 5.01%~27.04% | 剑叶长、叶宽、叶面积 | [ | |
| 广陆矮4号×日本晴 | CSSLs | 175 | 20 | 0.24%~10.90% | 叶长、叶宽 | [ | |
| 华占×热研2号 | RIL/F12 | 120 | 35 | 叶长、叶宽、叶面积 | [ | ||
| 日本晴×H71D | RIL/F2 | 310 | 38 | 7.17%~52.62% | 一次枝梗、二次枝梗、穗长、穗粒数、着粒密度 | [ | |
| 越南传统水稻、Nipponbare, IR64, Azucena | RIL/F2 | 159 | 29 | 14.00%~20.00% | 二次枝梗、穗颖花数 | [ | |
| Koshihikari×Yamadanishiki | RIL/F2 | 190 | 3 | 2.90%~55.10% | 有效穗、穗粒数 | [ | |
| 穗部 | 龙稻5号×中优早8号 | RIL/F7 | 180 | 16 | 8.53%~38.09% | 一次枝梗、二次枝梗、穗颖花数、穗粒数、结实率、着粒密度 | [ |
| Maybelle×Baiyeqiu | DH | 168 | 24 | 3.86%~30.86% | 一次枝梗、二次枝梗、穗长 | [ | |
| Aromatic, Aus, Indica, TEJ, TRJ, Admixtures | RIL/F2 | 183 | 42 | 3.50%~10.50% | 一次枝梗、二次枝梗、花序长度、有效穗 | [ | |
| 日本晴×Z746 | CSSSL/F2 | 164 | 16 | 3.35%~60.28% | 二次枝梗 | [ |
Table 1 The QTL location of major plant architecture in rice
| 性状 | 亲本组合 | 群体类型 | 群体大小 | QTLs | 贡献率 | 株型性状 | 参考文献 |
|---|---|---|---|---|---|---|---|
| 株高 | IR24×Asominori | IAS/IAS | 132 | 8 | 5.64%~13.87% | 株高 | [ |
| 日本晴×泸恢99 | RIL/F8 | 188 | 3 | 1.08%~3.16% | 株高 | [ | |
| BG1×XLJ | RIL/F2 | 269 | 2 | 5.75% | 株高 | [ | |
| 沈农265×LTH | RIL/F2 | 126 | 4 | 11.30%~60.40% | 株高 | [ | |
| 嘉早17×D50 | RIL/F2:3 | 225 | 6 | 1.76%~15.34% | 株高 | [ | |
| 多亲本 | MAGIC | 440 | 5 | 3.39%~90.22% | 株高 | [ | |
| 龙稻5号×中优早8号 | RIL/F7 | 180 | 7 | 2.71%~36.98% | 株高 | [ | |
| 叶片 | Z481×日本晴 | RIL/F2 | 150 | 12 | 4.15%~89.81% | 剑叶长、宽、长宽比和叶面积 | [ |
| 汕优63 | RIL/F10 | 241 | 41 | 3.19%~26.23% | 剑叶、倒二叶、倒三叶 | [ | |
| 两优培九(LYP9) | RIL/F2 | 132 | 43 | 4.00%~24.00% | 剑叶大小 | [ | |
| 日本晴×9311 | RIL/F2 | 189 | 42 | 5.01%~27.04% | 剑叶长、叶宽、叶面积 | [ | |
| 广陆矮4号×日本晴 | CSSLs | 175 | 20 | 0.24%~10.90% | 叶长、叶宽 | [ | |
| 华占×热研2号 | RIL/F12 | 120 | 35 | 叶长、叶宽、叶面积 | [ | ||
| 日本晴×H71D | RIL/F2 | 310 | 38 | 7.17%~52.62% | 一次枝梗、二次枝梗、穗长、穗粒数、着粒密度 | [ | |
| 越南传统水稻、Nipponbare, IR64, Azucena | RIL/F2 | 159 | 29 | 14.00%~20.00% | 二次枝梗、穗颖花数 | [ | |
| Koshihikari×Yamadanishiki | RIL/F2 | 190 | 3 | 2.90%~55.10% | 有效穗、穗粒数 | [ | |
| 穗部 | 龙稻5号×中优早8号 | RIL/F7 | 180 | 16 | 8.53%~38.09% | 一次枝梗、二次枝梗、穗颖花数、穗粒数、结实率、着粒密度 | [ |
| Maybelle×Baiyeqiu | DH | 168 | 24 | 3.86%~30.86% | 一次枝梗、二次枝梗、穗长 | [ | |
| Aromatic, Aus, Indica, TEJ, TRJ, Admixtures | RIL/F2 | 183 | 42 | 3.50%~10.50% | 一次枝梗、二次枝梗、花序长度、有效穗 | [ | |
| 日本晴×Z746 | CSSSL/F2 | 164 | 16 | 3.35%~60.28% | 二次枝梗 | [ |
| 性状 | 基因 | 基因效应 | 参考文献 |
|---|---|---|---|
| 株高 | TUD1 | 调控株高、粒型 | [ |
| NAL1 | 调节株高、穗长、分蘖 | [ | |
| NAL11 | 调控株高与分蘖、茎变粗、穗变大 | [ | |
| GS6.1 | 控制株高 | [ | |
| 叶片 | ILA1 | 控制叶夹角 | [ |
| WL1 | 调控叶宽 | [ | |
| 穗部 | RFL | 调控枝梗数与穗粒数 | [ |
| TAW1 | 调控枝梗分生组织,影响枝梗数与穗粒数 | [ | |
| RPAD | 调控分蘖、穗粒数 | [ | |
| TAC1、TIG1 | 调控分蘖角 | [ | |
| SP3 | 调控枝梗数、穗粒数 | [ | |
| MFS4 | 正调控小穗花分生组织的分化 | [ |
Table 2 The genes of plant architecture cloned in rice
| 性状 | 基因 | 基因效应 | 参考文献 |
|---|---|---|---|
| 株高 | TUD1 | 调控株高、粒型 | [ |
| NAL1 | 调节株高、穗长、分蘖 | [ | |
| NAL11 | 调控株高与分蘖、茎变粗、穗变大 | [ | |
| GS6.1 | 控制株高 | [ | |
| 叶片 | ILA1 | 控制叶夹角 | [ |
| WL1 | 调控叶宽 | [ | |
| 穗部 | RFL | 调控枝梗数与穗粒数 | [ |
| TAW1 | 调控枝梗分生组织,影响枝梗数与穗粒数 | [ | |
| RPAD | 调控分蘖、穗粒数 | [ | |
| TAC1、TIG1 | 调控分蘖角 | [ | |
| SP3 | 调控枝梗数、穗粒数 | [ | |
| MFS4 | 正调控小穗花分生组织的分化 | [ |
| 基因名称 | 编辑后结果 | 编辑方式 | 参考文献 |
|---|---|---|---|
| Sd8 | 降低水稻品种株高,减小叶夹角植株更加直立,且单株产量没有受到影响 | Cas9 | [ |
| IPA1 | 穗重和穗数同时增加、株高变高、茎秆和根系粗壮 | Cas9 | [ |
| Gn1a、CKX4、CKX11、CKX9 | 水稻的株高、穗长、粒大小和每穗粒数增加 | Cas12 | [ |
| GW5、TGW6 | 粒重增加 | Cas9 | [ |
| CKX5、CKX7 | 粒型变圆、饱满 | Cas12 | [ |
| PIN5b | 穗长增长 | Cas9 | [ |
| FWL4 | 有效分蘖变多、产量增加 | Cas9 | [ |
| CAO1 | 水稻品种株高增加 | Cas12 | [ |
| SD1/GA20ox2 | 株高增加 | Cas9 | [ |
Table 3 Gene-edited plant type genes
| 基因名称 | 编辑后结果 | 编辑方式 | 参考文献 |
|---|---|---|---|
| Sd8 | 降低水稻品种株高,减小叶夹角植株更加直立,且单株产量没有受到影响 | Cas9 | [ |
| IPA1 | 穗重和穗数同时增加、株高变高、茎秆和根系粗壮 | Cas9 | [ |
| Gn1a、CKX4、CKX11、CKX9 | 水稻的株高、穗长、粒大小和每穗粒数增加 | Cas12 | [ |
| GW5、TGW6 | 粒重增加 | Cas9 | [ |
| CKX5、CKX7 | 粒型变圆、饱满 | Cas12 | [ |
| PIN5b | 穗长增长 | Cas9 | [ |
| FWL4 | 有效分蘖变多、产量增加 | Cas9 | [ |
| CAO1 | 水稻品种株高增加 | Cas12 | [ |
| SD1/GA20ox2 | 株高增加 | Cas9 | [ |
| 1 | 张启发.绿色超级稻培育的设想[J].分子植物育种,2005,3(5):601-602. |
| ZHANG Q F. Strategies for developing green super rice[J]. Mol. Plant Breed., 2005, 3(5): 601-602. | |
| 2 | BOYSEN J P. Die Stoffproduktion der Pflanzen[J]. Protoplasma, 1933, 18(4): 311. |
| 3 | HEATH O V S, GREGORY F G. The constancy of the mean net assimilation rate and its ecological importance[J]. Ann. Bot., 1938, 2(8): 811-818. |
| 4 | DONALD C M. The breeding of crop ideotypes[J]. Euphytica, 1968, 17(3): 385-403. |
| 5 | 马梦影,巩文靓,康雪蒙,等.水稻理想株型改良的研究进展[J].中国农学通报,2020,36(29):1-6. |
| MA M Y, GONG W J, KANG X M, et al.. The improvement of ideal plant type of rice: a review[J]. Chin. Agric. Sci. Bull., 2020, 36(29): 1-6. | |
| 6 | 松岛省三(日.稻作的理论与技术[M].庞诚译.北京:中国农业出版社,1966. |
| 7 | 黄耀祥,陈顺佳,陈金灿,等.水稻丛化育种[J].广东农业科学,1983,10(1):1-6. |
| HUANG Y X, CHEN S J, CHEN J C, et al.. Rice cluster breeding[J]. Guangdong Agric. Sci., 1983, 10(1): 1-6. | |
| 8 | 杨守仁.水稻株形研究的进展[J].作物学报,1982,8(3):205-210. |
| YANG S R. Advances in plant morphology of rice[J]. Acta Agron. Sin., 1982, 8(3): 205-210. | |
| 9 | MONNA L, KITAZAWA N, YOSHINO R, et al.. Positional cloning of rice semidwarfing gene, sd-1: rice "green revolution gene" encodes a mutant enzyme involved in gibberellin synthesis[J]. DNA Res., 2002, 9(1): 11-17. |
| 10 | SPIELMEYER W, ELLIS M H, CHANDLER P M. Semidwarf (sd-1), "green revolution" rice, contains a defective gibberellin 20-oxidase gene[J]. Proc. Natl. Acad. Sci. USA, 2002, 99(13): 9043-9048. |
| 11 | ASHIKARI M, SAKAKIBARA H, LIN S, et al.. Cytokinin oxidase regulates rice grain production[J]. Science, 2005, 309(5735): 741-745. |
| 12 | HU M, LV S, WU W, et al.. The domestication of plant architecture in African rice[J]. Plant J., 2018, 94(4): 661-669. |
| 13 | WU Y, ZHAO S, LI X, et al.. Deletions linked to PROG1 gene participate in plant architecture domestication in Asian and African rice[J/OL]. Nat. Commun., 2018, 9(1): 4157[2024-04-19]. . |
| 14 | ZHANG W, TAN L, SUN H, et al.. Natural variations at TIG1 encoding a TCP transcription factor contribute to plant architecture domestication in rice[J]. Mol. Plant, 2019, 12(8): 1075-1089. |
| 15 | 王智权,江玲,尹长斌,等.水稻产量相关农艺性状杂种优势位点的定位[J].中国水稻科学,2013,27(6):569-576. |
| WANG Z Q, JIANG L, YIN C B, et al.. QTL mapping of heterotic loci of yield-related traits in rice[J]. Chin. J. Rice Sci., 2013, 27(6): 569-576. | |
| 16 | 赵建国,蒋开锋,杨莉,等.水稻产量相关性状QTL定位[J].中国水稻科学,2013,27(4):344-352. |
| ZHAO J G, JIANG K F, YANG L, et al.. QTL mapping for yield related components in A RIL population of rice[J]. Chin. J. Rice Sci., 2013, 27(4): 344-352. | |
| 17 | 占小登,于萍,林泽川,等.利用大粒籼/小粒粳重组自交系定位水稻生育期及产量相关性状QTL[J].中国水稻科学,2014,28(6):570-580. |
| ZHAN X D, YU P, LIN Z C, et al.. QTL mapping of heading date and yield-related traits in rice using a recombination inbred lines (RILs) population derived from BG1/XLJ[J]. Chin. J. Rice Sci., 2014, 28(6): 570-580. | |
| 18 | 姚晓云,李清,刘进,等.不同环境下水稻株高和穗长的QTL分析[J].中国农业科学,2015,48(3):407-414. |
| YAO X Y, LI Q, LIU J, et al.. Dissection of QTLs for plant height and panicle length traits in rice under different environment[J]. Sci. Agric. Sin., 2015, 48(3): 407-414. | |
| 19 | 圣忠华,朱子亮,马宁,等.超级稻品种中嘉早17产量相关性状QTL定位研究[J].中国水稻科学,2016,30(1):35-43. |
| SHENG Z H, ZHU Z L, MA N, et al.. QTL mapping of yield related traits in super rice variety Zhongjiazao17[J]. Chin. J. Rice Sci., 2016, 30(1): 35-43. | |
| 20 | 申聪聪,朱亚军,陈凯,等.利用水稻MAGIC群体关联定位抽穗期和株高QTL[J].作物学报,2017,43(11):1611-1621. |
| SHEN C C, ZHU Y J, CHEN K, et al.. Mapping of QTLs for heading date and plant height using MAGIC populations of rice[J]. Acta Agron. Sin., 2017, 43(11): 1611-1621. | |
| 21 | 沈文强,赵冰冰,于国玲,等.优良水稻染色体片段代换系Z746的鉴定及重要农艺性状QTL定位及其验证[J].作物学报,2021,47(3):451-461. |
| SHEN W Q, ZHAO B B, YU G L, et al.. Identification of an excellent rice chromosome segment substitution line Z746 and QTL mapping and verification of important agronomic traits[J]. Acta Agron. Sin., 2021, 47(3): 451-461. | |
| 22 | LI Y, ZHENG X, LI S, et al.. Quantitative trait loci analysis of leaf morphology in rice[J]. Chin. Rice Res. Newslett., 2001, 9(1): 2-4. |
| 23 | 沈波, 庄杰云, 张克勤, 等. 水稻叶片和根系活力的QTL定位[J]. 遗传学报, 2003, 30(12): 1133-1139. |
| SHEN B, ZHUANG J Y, ZHANG K Q, et al.. QTLs mapping of leaf traits and root vitality in a recombinant inbred line population of rice[J]. Acta Genet. Sin., 2003, 30(12): 1133-1139. | |
| 24 | ZHANG B, YE W, REN D, et al.. Genetic analysis of flag leaf size and candidate genes determination of a major QTL for flag leaf width in rice[J/OL]. Rice, 2015, 8(1): 39[2024-04-19]. . |
| 25 | 王兰,黄李超,代丽萍,等.利用日本晴/9311重组自交系群体定位水稻成熟期叶形相关性状QTL[J].中国水稻科学,2014,28(6):589-597. |
| WANG L, HUANG L C, DAI L P, et al.. QTL analysis for rice leaf morphology at maturity stage using a recombinant inbred line population derived from a cross between nipponbare and 9311[J]. Chin. J. Rice Sci., 2014, 28(6): 589-597. | |
| 26 | 周勇,陶亚军,姚锐,等.利用染色体片段代换系定位水稻叶片形态性状QTL[J].作物学报,2017,43(11):1650-1657. |
| ZHOU Y, TAO Y J, YAO R, et al.. QTL mapping for leaf morphological traits of rice using chromosome segment substitution lines[J]. Acta Agron. Sin., 2017, 43(11): 1650-1657. | |
| 27 | 王盛,叶涵斐,李三峰,等.水稻剑叶形态QTL定位及候选基因分析[J].中国科学:生命科学,2021,51(5):567-578. |
| WANG S, YE H F, LI S F, et al.. QTL mapping and analysis of candidate genes in flag leaf morphology in rice[J]. Sci. Sin. Vitae, 2021, 51(5): 567-578. | |
| 28 | 吴亚辉,陶星星,肖武名,等.水稻穗部性状的QTL分析[J].作物学报,2014,40(2):214-221. |
| WU Y H, TAO X X, XIAO W M, et al.. Dissection of QTLs for panicle traits in rice(Oryza sativa)[J]. Acta Agron. Sin., 2014, 40(2): 214-221. | |
| 29 | TA K N, KHONG N G, HA T L, et al.. A genome-wide association study using a Vietnamese landrace panel of rice (Oryza sativa) reveals new QTLs controlling panicle morphological traits[J/OL]. BMC Plant Biol., 2018, 18(1): 282[2024-04-19]. . |
| 30 | OKADA S, SASAKI M, YAMASAKI M. A novel rice QTL qOPW11 associated with panicle weight affects panicle and plant architecture[J/OL]. Rice, 2018, 11(1): 53[2024-04-19]. . |
| 31 | 刘进,姚晓云,刘丹,等.不同生态环境下水稻穗部性状QTL鉴定[J].中国水稻科学,2019,33(2):124-134. |
| LIU J, YAO X Y, LIU D, et al.. Identification of QTL for panicle traits under multiple environments in rice (Oryza sativa L.)[J]. Chin. J. Rice Sci., 2019, 33(2): 124-134. | |
| 32 | XU X, ZHANG M, XU Q, et al.. Quantitative trait loci identification and genetic diversity analysis of panicle structure and grain shape in rice[J]. Plant Growth Regul., 2020, 90(1): 89-100. |
| 33 | THAPA R, TABIEN R E, SEPTININGSIH E M. Genome-wide association study to identify chromosomal regions related to panicle architecture in rice (Oryza sativa)[J]. Genet. Resour. Crop Evol., 2021, 68(7): 2849-2865. |
| 34 | 李儒香,周恺,王大川,等.水稻CSSL-Z481代换片段携带的穗部性状QTL分析及次级代换系培育[J].中国农业科学,2023,56(7):1228-1247. |
| LI R X, ZHOU K, WANG D C, et al.. Analysis of QTLs and breeding of secondary substitution lines for panicle traits based on rice chromosome segment substitution line CSSL-Z481[J]. Sci. Agric. Sin., 2023, 56(7): 1228-1247. | |
| 35 | ASANO K, TAKASHI T, MIURA K, et al.. Genetic and molecular analysis of utility of sd1 alleles in rice breeding[J]. Breed. Sci., 2007, 57(1): 53-58. |
| 36 | 陈达刚,周新桥,李丽君,等.水稻叶厚性状的研究进展[J].农学学报,2015,5(11):22-25. |
| CHEN D G, ZHOU X Q, LI L J, et al.. Research progress on rice (Oryza sativa. L) leaf thickness[J]. J. Agric., 2015, 5(11): 22-25. | |
| 37 | 许娜,徐铨,徐正进,等.水稻株型生理生态与遗传基础研究进展[J].作物学报,2023,49(7):1735-1746. |
| XU N, XU Q, XU Z J, et al.. Research progress on physiological ecology and genetic basis of rice plant architecture[J]. Acta Agron. Sin., 2023, 49(7): 1735-1746. | |
| 38 | 高艳红,吕川根,王茂青,等.水稻卷叶性状QTL的初步定位[J].江苏农业学报,2007,23(1):5-10. |
| GAO Y H, LV C G, WANG M Q, et al.. QTL mapping for rolled leaf gene in rice[J]. Jiangsu J. Agric. Sci., 2007, 23(1): 5-10. | |
| 39 | YOSHIDA S. Fundamentals of rice crop science[M]. Int. Rice Res. Inst., 1981. |
| 40 | 范玉斌,梁婉琪.水稻叶极性发育分子机制研究进展[J].上海交通大学学报(农业科学版),2014,32(1):16-22. |
| FAN Y B, LIANG W Q. Research progress on the mechanism of leaf polarity establishment in rice[J]. J. Shanghai Jiao Tong Univ. Agric. Sci., 2014, 32(1): 16-22. | |
| 41 | IKEDA-KAWAKATSU K, MAEKAWA M, IZAWA T, et al.. ABERRANT PANICLE ORGANIZATION 2/RFL, the rice ortholog of Arabidopsis LEAFY, suppresses the transition from inflorescence meristem to floral meristem through interaction with APO1[J]. Plant J., 2012, 69(1): 168-180. |
| 42 | WANG Y, ZENG X, LU L, et al.. MULTI-FLORET SPIKELET 4 (MFS4) regulates spikelet development and grain size in rice[J]. Rice Sci., 2021, 28(4): 344-357. |
| 43 | ZHANG D, YUAN Z. Molecular control of grass inflorescence development[J]. Annu. Rev. Plant Biol., 2014, 65: 553-578. |
| 44 | PAUTLER M, TANAKA W, YHIRANO H, et al.. Grass meristems I: shoot apical meristem maintenance, axillary meristem determinacy and the floral transition[J]. Plant Cell Physiol., 2013, 54(3): 302-312. |
| 45 | MIMIDA N, GOTO K, KOBAYASHI Y, et al.. Functional divergence of the TFL1-like gene family in Arabidopsis revealed by characterization of a novel homologue[J]. Genes Cells, 2001, 6(4): 327-336. |
| 46 | YOSHIDA A, SASAO M, YASUNO N, et al.. TAWAWA1, a regulator of rice inflorescence architecture, functions through the suppression of meristem phase transition[J]. Proc. Natl. Acad. Sci. USA, 2013, 110(2): 767-772. |
| 47 | HUANG Y, BAI X, LUO M, et al.. Short Panicle 3 controls panicle architecture by upregulating APO2/RFL and increasing cytokinin content in rice[J]. J. Integr. Plant Biol., 2019, 61(9): 987-999. |
| 48 | COOK C E, WHICHARD L P, WALL M, et al.. Germination stimulants. II. structure of strigol, a potent seed germination stimulant for witchweed (Striga lutea)[J]. J. Am. Chem. Soc., 1972, 94(17): 6198-6199. |
| 49 | HUMPHREY A J, BEALE M H. Strigol: biogenesis and physiological activity[J]. Phytochemistry, 2006, 67(7): 636-640. |
| 50 | UMEHARA M, HANADA A, YOSHIDA S, et al.. Inhibition of shoot branching by new terpenoid plant hormones[J]. Nature, 2008, 455(7210): 195-200. |
| 51 | ISHIKAWA S, MAEKAWA M, ARITE T, et al.. Suppression of tiller bud activity in tillering dwarf mutants of rice[J]. Plant Cell Physiol., 2005, 46(1): 79-86. |
| 52 | ARITE T, IWATA H, OHSHIMA K, et al.. DWARF10, an RMS1/MAX4/DAD1 ortholog, controls lateral bud outgrowth in rice[J]. Plant J. Cell Mol. Biol., 2007, 51(6): 1019-1029. |
| 53 | ARITE T, UMEHARA M, ISHIKAWA S, et al.. d14, a strigolactone-insensitive mutant of rice, shows an accelerated outgrowth of tillers[J]. Plant Cell Physiol., 2009, 50(8): 1416-1424. |
| 54 | ZOU J, ZHANG S, ZHANG W, et al.. The rice HIGH-TILLERING DWARF1 encoding an ortholog of Arabidopsis MAX3 is required for negative regulation of the outgrowth of axillary buds[J]. Plant J., 2006, 48(5): 687-698. |
| 55 | LIN H, WANG R, QIAN Q, et al.. DWARF27, an iron-containing protein required for the biosynthesis of strigolactones, regulates rice tiller bud outgrowth[J]. Plant Cell, 2009, 21(5): 1512-1525. |
| 56 | ZHOU F, LIN Q, ZHU L, et al.. D14-SCFD3-dependent degradation of D53 regulates strigolactone signalling[J]. Nature, 2013, 504: 406-410. |
| 57 | JIANG L, LIU X, XIONG G, et al.. DWARF 53 acts as a repressor of strigolactone signalling in rice[J]. Nature, 2013, 504(7480): 401-405. |
| 58 | 高秀华,傅向东.赤霉素信号转导及其调控植物生长发育的研究进展[J].生物技术通报,2018,34(7):1-13. |
| GAO X H, FU X D. Research progress for the gibberellin signaling and action on plant growth and development[J]. Biotechnol. Bull., 2018, 34(7): 1-13. | |
| 59 | SILVERSTONE A L, SUN T. Gibberellins and the green revolution[J]. Trends Plant Sci., 2000, 5(1): 1-2. |
| 60 | SASAKI A, ASHIKARI M, UEGUCHI-TANAKA M, et al.. Green revolution: a mutant gibberellin-synthesis gene in rice[J]. Nature, 2002, 416(6882): 701-702. |
| 61 | SAKAMOTO T, MIURA K, ITOH H, et al.. An overview of gibberellin metabolism enzyme genes and their related mutants in rice[J]. Plant Physiol., 2004, 134(4): 1642-1653. |
| 62 | MAGOME H, NOMURA T, HANADA A, et al.. CYP714B1 and CYP714B2 encode gibberellin 13-oxidases that reduce gibberellin activity in rice[J]. Proc. Natl. Acad. Sci. USA, 2013, 110(5): 1947-1952. |
| 63 | CHO S H, KANG K, LEE S H, et al.. OsWOX3A is involved in negative feedback regulation of the gibberellic acid biosynthetic pathway in rice (Oryza sativa)[J]. J. Exp. Bot., 2016, 67(6): 1677-1687. |
| 64 | GROVE M D, SPENCER G F, ROHWEDDER W K, et al.. Brassinolide, a plant growth-promoting steroid isolated from Brassica napus pollen[J]. Nature, 1979, 281(5728): 216-217. |
| 65 | KIM E J, RUSSINOVA E. Brassinosteroid signalling[J]. Curr. Biol., 2020, 30(7): 294-298. |
| 66 | HONG Z, UEGUCHI-TANAKA M, UMEMURA K, et al.. A rice brassinosteroid-deficient mutant, ebisu dwarf (d2), is caused by a loss of function of a new member of cytochrome P450[J]. Plant Cell, 2003, 15(12): 2900-2910. |
| 67 | HONG Z, UEGUCHI-TANAKA M, FUJIOKA S, et al.. The rice brassinosteroid-deficient dwarf2 mutant, defective in the rice homolog of Arabidopsis DIMINUTO/DWARF1, is rescued by the endogenously accumulated alternative bioactive brassinosteroid, dolichosterone[J]. Plant Cell, 2005, 17(8): 2243-2254. |
| 68 | TANABE S, ASHIKARI M, FUJIOKA S, et al.. A novel cytochrome P450 is implicated in brassinosteroid biosynthesis via the characterization of a rice dwarf mutant, dwarf11, with reduced seed length[J]. Plant Cell, 2005, 17(3): 776-790. |
| 69 | YAMAMURO C, IHARA Y, WU X, et al.. Loss of function of a rice brassinosteroid insensitive1 homolog prevents internode elongation and bending of the lamina joint[J]. Plant Cell, 2000, 12(9): 1591-1606. |
| 70 | TONG H, XIAO Y, LIU D, et al.. Brassinosteroid regulates cell elongation by modulating gibberellin metabolism in rice[J]. Plant Cell, 2014, 26(11): 4376-4393. |
| 71 | CAO H, CHEN S. Brassinosteroid-induced rice lamina joint inclination and its relation to indole-3-acetic acid and ethylene[J]. Plant Growth Regul., 1995, 16(2): 189-196. |
| 72 | SAKAMOTO T, MORINAKA Y, OHNISHI T, et al.. Erect leaves caused by brassinosteroid deficiency increase biomass production and grain yield in rice[J]. Nat. Biotechnol., 2006, 24(1): 105-109. |
| 73 | LI D, WANG L, WANG M, et al.. Engineering OsBAK1 gene as a molecular tool to improve rice architecture for high yield[J]. Plant Biotechnol. J., 2009, 7(8): 791-806. |
| 74 | ZHAO H, FU Y, ZHANG G, et al.. GS6.1 controls kernel size and plant architecture in rice[J/OL]. Planta, 2023, 258(2): 42[2024-04-19]. . |
| 75 | YOU J, XIAO W, ZHOU Y, et al.. The apc/ctad1-wide leaf 1-narrow leaf 1 pathway controls leaf width in rice[J]. Plant Cell, 2022, 34(11): 4313-4328. |
| 76 | NING J, ZHANG B, WANG N, et al.. Increased leaf angle1, a Raf-like MAPKKK that interacts with a nuclear protein family, regulates mechanical tissue formation in the Lamina joint of rice[J]. Plant Cell, 2011, 23(12): 4334-4347. |
| 77 | LI W, YAN J, ZHANG Y, et al.. Serine protease NAL1 exerts pleiotropic functions through degradation of TOPLESS-related corepressor in rice[J]. Nat. Plants, 2023, 9(7): 1130-1142. |
| 78 | LUO L, XIE Y, YU S, et al.. The DnaJ domain-containing heat-shock protein NAL11 determines plant architecture by mediating gibberellin homeostasis in rice (Oryza sativa)[J]. New Phytol., 2023, 237(6): 2163-2179. |
| 79 | HU X, QIAN Q, XU T, et al.. The U-box E3 ubiquitin ligase TUD1 functions with a heterotrimeric G α subunit to regulate brassinosteroid-mediated growth in rice[J/OL]. PLoS Genet., 2013, 9(3): e1003391[2024-04-19]. . |
| 80 | QU R, ZHANG P, LIU Q, et al.. Genome-edited atp binding cassette b1 transporter sd8 knockouts show optimized rice architecture without yield penalty[J/OL]. Plant Commun., 2022, 3(5): 100347[2024-04-19]. . |
| 81 | SONG X, MENG X, GUO H, et al.. Targeting a gene regulatory element enhances rice grain yield by decoupling panicle number and size[J]. Nat. Biotechnol., 2022, 40(9): 1403-1411. |
| 82 | ZHENG X, ZHANG S, LIANG Y, et al.. Loss-function mutants of OsCKX gene family based on CRISPR-Cas systems revealed their diversified roles in rice[J/OL]. Plant Genome, 2023, 16(2): e20283[2024-04-19]. . |
| 83 | XU R, YANG Y, QIN R, et al.. Rapid improvement of grain weight via highly efficient CRISPR/Cas9-mediated multiplex genome editing in rice[J]. J. Genet. Genomics, 2016, 43(8): 529-532. |
| 84 | ZENG Y, WEN J, ZHAO W, et al.. Rational improvement of rice yield and cold tolerance by editing the three genes OsPIN 5b, GS3, and OsMYB30 with the CRISPR-Cas9 system[J/OL]. Front. Plant Sci., 2019, 10: 1663[2024-04-19]. . |
| 85 | GAO Q, LI G, SUN H, et al.. Targeted mutagenesis of the rice FW 2.2-like gene family using the CRISPR/Cas9 system reveals OsFWL4 as a regulator of tiller number and plant yield in rice[J/OL]. Int. J. Mol. Sci., 2020, 21(3): 809[2024-04-19]. . |
| 86 | BEGEMANN M B, GRAY B N, JANUARY E, et al.. Precise insertion and guided editing of higher plant genomes using Cpf1 CRISPR nucleases[J/OL]. Sci. Rep., 2017, 7(1): 11606[2024-04-19]. . |
| 87 | HAN Y, TENG K, NAWAZ G, et al.. Generation of semi-dwarf rice (Oryza sativa L.) lines by CRISPR/Cas9-directed mutagenesis of OsGA20ox2 and proteomic analysis of unveiled changes caused by mutations[J/OL]. 3 Biotech, 2019, 9(11): 387[2024-04-19]. . |
| 88 | 王锦艳,钏兴宽,康洪灿,等.水稻理想株型育种的理论和方法初论[J].时代农机,2018,45(2):160. |
| WANG J Y, CHUAN X K, KANG H C, et al.. Preliminary discussion on the theory and method of rice ideal plant type breeding[J]. Times Agric. Mach., 2018, 45(2): 160. | |
| 89 | 兰金松,庄慧.水稻株型的分子机理研究进展[J].中国水稻科学,2023,37(5):449-458. |
| LAN J S, ZHUANG H. Advances in the molecular mechanism of rice plant type[J]. Chin. J. Rice Sci., 2023, 37(5): 449-458. | |
| 90 | 黄卫衡,吕启明,辛业芸.水稻分蘖角度的研究进展[J].杂交水稻,2019,34(3):1-7. |
| HUANG W H, LÜ Q M, XIN Y Y. Research progress on rice tiller angle[J]. Hybrid Rice, 2019, 34(3): 1-7. |
| [1] | NIU Li-fang, LU Tie-gang, LIN Hao*. Progress of High Photosynthesis Efficiency Rice Breeding [J]. Curr. Biotech., 2014, 4(3): 153-157. |
| [2] | MENG Xiao-qing1, HOU Zhi-xia1*, ZHANG Lan2. Progress on Molecular and Genetic Mechanisms of Floral Control in Higher Plants [J]. Curr. Biotech., 2013, 3(1): 1-6. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||