Current Biotechnology ›› 2025, Vol. 15 ›› Issue (3): 380-387.DOI: 10.19586/j.2095-2341.2025.0045
• Reviews • Previous Articles Next Articles
Zhaohui CUI(
), Ling GUO, Xudong SHEN, Yi LIN, Lili ZHAI(
)
Received:2025-03-27
Accepted:2025-05-16
Online:2025-05-25
Published:2025-07-01
Contact:
Lili ZHAI
通讯作者:
翟丽丽
作者简介:崔兆惠 E-mail: zhaohuicui@126.com;
基金资助:CLC Number:
Zhaohui CUI, Ling GUO, Xudong SHEN, Yi LIN, Lili ZHAI. Research Progress on Yeast Expression of Therapeutic Recombinant Proteins[J]. Current Biotechnology, 2025, 15(3): 380-387.
崔兆惠, 郭玲, 沈旭东, 林毅, 翟丽丽. 酵母表达治疗性重组蛋白的研究进展[J]. 生物技术进展, 2025, 15(3): 380-387.
| 类别 | 治疗性重组蛋白名称 | 生产公司 | 表达系统 | 治疗应用 |
|---|---|---|---|---|
| 血液因子 | 人血清白蛋白 | 英国Albumedix公司 | 酿酒酵母 | 生物药物和疫苗的稳定剂 |
| 重组凝血因子 A亚基 | 丹麦诺和诺德公司 | 酿酒酵母 | 先天性 A亚基缺乏症 | |
| 重组人组织型纤溶酶原激活剂 | 德国拜耳医药公司 | 酿酒酵母 | 与肝素相关的抗凝治疗 | |
| 重组水蛭素 | 德国赫斯特公司 | 酿酒酵母 | 预防静脉血栓形成 | |
| 血浆激肽释放酶抑制剂 | 美国德纳维制药公司 | 毕赤酵母 | 预防遗传性血管性水肿 | |
| 重组人白介素-11 | 杭州九源基因工程股份有限公司 | 毕赤酵母 | 血小板减少 | |
| 重组人表皮生长因子凝胶 | 桂林华诺威基因药业股份有限公司 | 酵母 | 皮肤溃疡、烧伤 | |
| 重组人表皮生长因子滴眼液 | 桂林华诺威基因药业股份有限公司 | 酵母 | 角膜疾病 | |
| 重组人干扰素α2b | 上海腾瑞制药股份有限公司 | 酵母 | 病毒感染、肿瘤 | |
| 重组激素 | 胰岛素 | 丹麦诺和诺德公司 | 酿酒酵母 | 糖尿病 |
| 生长激素 | 德国BioPartner公司 | 酿酒酵母 | 生长激素缺乏 | |
| 胰高血糖素样肽-1类似物 | 丹麦诺和诺德公司 | 酿酒酵母 | 2型糖尿病 | |
| 胰高血糖素 | 丹麦诺和诺德公司 | 酿酒酵母 | 低血糖症 | |
| 重组疫苗 | 重组乙型肝炎疫苗 | 德国默克公司 | 酿酒酵母 | 预防乙型肝炎 |
| 重组四价人乳头瘤病毒疫苗 | 美国默沙东公司 | 酿酒酵母 | 预防由HPV病毒引起的疾病 | |
| 重组九价人乳头瘤病毒疫苗 | 德国默克公司 | 酿酒酵母 | 预防由HPV病毒引起的疾病 | |
| 重组酶 | 尿酸氧化酶 | 法国赛诺菲公司 | 酿酒酵母 | 高尿酸血症 |
| 融合蛋白 | GLP-1受体激动剂 | 英国葛兰素史克公司 | 酿酒酵母 | 2型糖尿病 |
Table 1 Approved therapeutic recombinant proteins for clinical use
| 类别 | 治疗性重组蛋白名称 | 生产公司 | 表达系统 | 治疗应用 |
|---|---|---|---|---|
| 血液因子 | 人血清白蛋白 | 英国Albumedix公司 | 酿酒酵母 | 生物药物和疫苗的稳定剂 |
| 重组凝血因子 A亚基 | 丹麦诺和诺德公司 | 酿酒酵母 | 先天性 A亚基缺乏症 | |
| 重组人组织型纤溶酶原激活剂 | 德国拜耳医药公司 | 酿酒酵母 | 与肝素相关的抗凝治疗 | |
| 重组水蛭素 | 德国赫斯特公司 | 酿酒酵母 | 预防静脉血栓形成 | |
| 血浆激肽释放酶抑制剂 | 美国德纳维制药公司 | 毕赤酵母 | 预防遗传性血管性水肿 | |
| 重组人白介素-11 | 杭州九源基因工程股份有限公司 | 毕赤酵母 | 血小板减少 | |
| 重组人表皮生长因子凝胶 | 桂林华诺威基因药业股份有限公司 | 酵母 | 皮肤溃疡、烧伤 | |
| 重组人表皮生长因子滴眼液 | 桂林华诺威基因药业股份有限公司 | 酵母 | 角膜疾病 | |
| 重组人干扰素α2b | 上海腾瑞制药股份有限公司 | 酵母 | 病毒感染、肿瘤 | |
| 重组激素 | 胰岛素 | 丹麦诺和诺德公司 | 酿酒酵母 | 糖尿病 |
| 生长激素 | 德国BioPartner公司 | 酿酒酵母 | 生长激素缺乏 | |
| 胰高血糖素样肽-1类似物 | 丹麦诺和诺德公司 | 酿酒酵母 | 2型糖尿病 | |
| 胰高血糖素 | 丹麦诺和诺德公司 | 酿酒酵母 | 低血糖症 | |
| 重组疫苗 | 重组乙型肝炎疫苗 | 德国默克公司 | 酿酒酵母 | 预防乙型肝炎 |
| 重组四价人乳头瘤病毒疫苗 | 美国默沙东公司 | 酿酒酵母 | 预防由HPV病毒引起的疾病 | |
| 重组九价人乳头瘤病毒疫苗 | 德国默克公司 | 酿酒酵母 | 预防由HPV病毒引起的疾病 | |
| 重组酶 | 尿酸氧化酶 | 法国赛诺菲公司 | 酿酒酵母 | 高尿酸血症 |
| 融合蛋白 | GLP-1受体激动剂 | 英国葛兰素史克公司 | 酿酒酵母 | 2型糖尿病 |
| 治疗性重组蛋白名称 | 生产公司 | 表达系统 | 所处阶段 | 治疗应用 | |
|---|---|---|---|---|---|
| 重组疫苗 | 四价重组诺如病毒疫苗 | 安徽智飞龙科马生物制药有限公司 | 毕赤酵母 | 临床Ⅲ期 | 预防诺如病毒导致的胃肠炎 |
| 重组肠道病毒71型疫苗 | 重庆博唯佰泰生物制药有限公司 | 汉逊酵母 | 临床Ⅰ期 | 预防手足口病和肠道病毒感染 | |
| 重组十一价人乳头瘤病毒疫苗 | 北京生物制品研究所有限责任公司 | 汉逊酵母 | 临床Ⅲ期 | 人乳头瘤病毒感染 | |
| 重组十五价人乳头瘤病毒疫苗 | 重庆博唯佰泰生物制药有限公司 | 汉逊酵母 | 临床Ⅱ期 | 预防由HPV病毒引起的疾病 | |
| 融合蛋白 | 重组人血清白蛋白-干扰素α2a融合蛋白 | 解放军军事医学科学院生物工程研究所 | 酵母 | 临床Ⅰ期 | 慢性乙型肝炎 |
| 重组人胰高血糖素样肽-1类似物融合蛋白 | 江苏泰康生物医药有限公司 | 酵母 | 临床Ⅰ期 | 2型糖尿病 | |
| 人血清白蛋白-人粒细胞集落刺激因子(Ⅰ)融合蛋白 | 迈威(上海)生物科技股份有限公司 | 酵母 | 申请上市 | 化疗引起的发热性中性粒细胞减少 | |
| 抗体 | 重组抗IL-4Rα单域抗体 | 上海洛启生物医药技术有限公司 | 毕赤酵母 | 临床Ⅱ期 | 哮喘、慢性阻塞性肺疾病 |
Table 2 Therapeutic recombinant proteins under development
| 治疗性重组蛋白名称 | 生产公司 | 表达系统 | 所处阶段 | 治疗应用 | |
|---|---|---|---|---|---|
| 重组疫苗 | 四价重组诺如病毒疫苗 | 安徽智飞龙科马生物制药有限公司 | 毕赤酵母 | 临床Ⅲ期 | 预防诺如病毒导致的胃肠炎 |
| 重组肠道病毒71型疫苗 | 重庆博唯佰泰生物制药有限公司 | 汉逊酵母 | 临床Ⅰ期 | 预防手足口病和肠道病毒感染 | |
| 重组十一价人乳头瘤病毒疫苗 | 北京生物制品研究所有限责任公司 | 汉逊酵母 | 临床Ⅲ期 | 人乳头瘤病毒感染 | |
| 重组十五价人乳头瘤病毒疫苗 | 重庆博唯佰泰生物制药有限公司 | 汉逊酵母 | 临床Ⅱ期 | 预防由HPV病毒引起的疾病 | |
| 融合蛋白 | 重组人血清白蛋白-干扰素α2a融合蛋白 | 解放军军事医学科学院生物工程研究所 | 酵母 | 临床Ⅰ期 | 慢性乙型肝炎 |
| 重组人胰高血糖素样肽-1类似物融合蛋白 | 江苏泰康生物医药有限公司 | 酵母 | 临床Ⅰ期 | 2型糖尿病 | |
| 人血清白蛋白-人粒细胞集落刺激因子(Ⅰ)融合蛋白 | 迈威(上海)生物科技股份有限公司 | 酵母 | 申请上市 | 化疗引起的发热性中性粒细胞减少 | |
| 抗体 | 重组抗IL-4Rα单域抗体 | 上海洛启生物医药技术有限公司 | 毕赤酵母 | 临床Ⅱ期 | 哮喘、慢性阻塞性肺疾病 |
| 1 | WALSH G, WALSH E. Biopharmaceutical benchmarks 2022[J]. Nat. Biotechnol., 2022, 40(12): 1722-1760. |
| 2 | PARTOW S, SIEWERS V, BJØRN S, et al.. Characterization of different promoters for designing a new expression vector in Saccharomyces cerevisiae [J]. Yeast, 2010, 27(11): 955-964. |
| 3 | HUERTAS M J, MICHÁN C. Paving the way for the production of secretory proteins by yeast cell factories[J]. Microb. Biotechnol., 2019, 12(6): 1095-1096. |
| 4 | MARTÍNEZ J L, LIU L, PETRANOVIC D, et al.. Pharmaceutical protein production by yeast: towards production of human blood proteins by microbial fermentation[J]. Curr. Opin. Biotechnol., 2012, 23(6): 965-971. |
| 5 | REBELLO S, ABRAHAM A, MADHAVAN A, et al.. Non-conventional yeast cell factories for sustainable bioprocesses[J/OL]. FEMS Microbiol. Lett., 2018, 365(21): 5096020[2025-05-16]. . |
| 6 | GOFFEAU A, BARRELL B G, BUSSEY H, et al.. Life with 6000 genes[J]. Science, 1996, 274(5287): 546-567. |
| 7 | THAK E J, YOO S J, MOON H Y, et al.. Yeast synthetic biology for designed cell factories producing secretory recombinant proteins[J/OL]. FEMS Yeast Res., 2020, 20(2): foaa009[2025-05-16]. . |
| 8 | KAVŠČEK M, STRAŽAR M, CURK T, et al.. Yeast as a cell factory: current state and perspectives[J/OL]. Microb. Cell Fact., 2015, 14: 94[2025-05-16]. . |
| 9 | KESIK-BRODACKA M. Progress in biopharmaceutical development[J]. Biotechnol. Appl. Biochem., 2018, 65(3): 306-322. |
| 10 | SPADIUT O, CAPONE S, KRAINER F, et al.. Microbials for the production of monoclonal antibodies and antibody fragments[J]. Trends Biotechnol., 2014, 32(1): 54-60. |
| 11 | VIEIRA GOMES A M, SOUZA CARMO T, SILVA CARVALHO L, et al.. Comparison of yeasts as hosts for recombinant protein production[J/OL]. Microorganisms, 2018, 6(2): 38[2025-05-16]. . |
| 12 | VALENZUELA P, MEDINA A, RUTTER W J, et al.. Synthesis and assembly of hepatitis B virus surface antigen particles in yeast[J]. Nature, 1982, 298(5872): 347-350. |
| 13 | DEMAIN A L, VAISHNAV P. Production of recombinant proteins by microbes and higher organisms[J]. Biotechnol. Adv., 2009, 27(3): 297-306. |
| 14 | PAYNE T, FINNIS C, EVANS L R, et al.. Modulation of chaperone gene expression in mutagenized Saccharomyces cerevisiae strains developed for recombinant human albumin production results in increased production of multiple heterologous proteins[J]. Appl. Environ. Microbiol., 2008, 74(24): 7759-7766. |
| 15 | HUANG M, WANG G, QIN J, et al.. Engineering the protein secretory pathway of Saccharomyces cerevisiae enables improved protein production[J]. Proc. Natl. Acad. Sci. USA, 2018, 115(47): 11025-11032. |
| 16 | LODI T, NEGLIA B, DONNINI C. Secretion of human serum albumin by Kluyveromyces lactis overexpressing KlPDI1 and KlERO1[J]. Appl. Environ. Microbiol., 2005, 71(8): 4359-4363. |
| 17 | YUN C R, KONG J N, HCHUNG J, et al.. Improved secretory production of the sweet-tasting protein, brazzein, in Kluyveromyces lactis [J]. J. Agric. Food Chem., 2016, 64(32): 6312-6316. |
| 18 | GASSER B, SAUER M, MAURER M, et al.. Transcriptomics-based identification of novel factors enhancing heterologous protein secretion in yeasts[J]. Appl. Environ. Microbiol., 2007, 73(20): 6499-6507. |
| 19 | ZHANG W, ZHAO H L, XUE C, et al.. Enhanced secretion of heterologous proteins in Pichia pastoris following overexpression of Saccharomyces cerevisiae chaperone proteins[J]. Biotechnol. Prog., 2006, 22(4): 1090-1095. |
| 20 | HACKEL B J, HUANG D, BUBOLZ J C, et al.. Production of soluble and active transferrin receptor-targeting single-chain antibody using Saccharomyces cerevisiae [J]. Pharm. Res., 2006, 23(4): 790-797. |
| 21 | DE RUIJTER J C, KOSKELA E V, FREY A D. Enhancing antibody folding and secretion by tailoring the Saccharomyces cerevisiae endoplasmic reticulum[J/OL]. Microb. Cell Fact., 2016, 15: 87[2025-05-16]. . |
| 22 | QI Q, LI F, YU R, et al.. Different routes of protein folding contribute to improved protein production in Saccharomyces cerevisiae [J/OL]. mBio, 2020, 11(6): e02743-20[2025-05-21]. . |
| 23 | HOU J, OSTERLUND T, LIU Z, et al.. Heat shock response improves heterologous protein secretion in Saccharomyces cerevisiae [J]. Appl. Microbiol. Biotechnol., 2013, 97(8): 3559-3568. |
| 24 | HOU J, TYO K, LIU Z, et al.. Engineering of vesicle trafficking improves heterologous protein secretion in Saccharomyces cerevisiae [J]. Metab. Eng., 2012, 14(2): 120-127. |
| 25 | BAO J, HUANG M, PETRANOVIC D, et al.. Balanced trafficking between the ER and the Golgi apparatus increases protein secretion in yeast[J/OL]. AMB Expr., 2018, 8(1): 37[2025-05-21]. . |
| 26 | BAO J, HUANG M, PETRANOVIC D, et al.. Moderate expression of SEC16 increases protein secretion by Saccharomyces cerevisiae [J/OL]. Appl. Environ. Microbiol., 2017, 83(14): e03400-16[2025-05-21]. . |
| 27 | CHO E Y, CHEON S A, KIM H, et al.. Multiple-yapsin-deficient mutant strains for high-level production of intact recombinant proteins in Saccharomyces cerevisiae [J]. J. Biotechnol., 2010, 149(1-2): 1-7. |
| 28 | TOMIMOTO K, FUJITA Y, IWAKI T, et al.. Protease-deficient Saccharomyces cerevisiae strains for the synthesis of human-compatible glycoproteins[J]. Biosci. Biotechnol. Biochem., 2013, 77(12): 2461-2466. |
| 29 | WU M, SHEN Q, YANG Y, et al.. Disruption of YPS1 and PEP4 genes reduces proteolytic degradation of secreted HSA/PTH in Pichia pastoris GS115[J]. J. Ind. Microbiol. Biotechnol., 2013, 40(6): 589-599. |
| 30 | IDIRIS A, TOHDA H, SASAKI M, et al.. Enhanced protein secretion from multiprotease-deficient fission yeast by modification of its vacuolar protein sorting pathway[J]. Appl. Microbiol. Biotechnol., 2010, 85(3): 667-677. |
| 31 | FINNIS C J A, PAYNE T, HAY J, et al.. High-level production of animal-free recombinant transferrin from Saccharomyces cerevisiae [J/OL]. Microb. Cell Fact., 2010, 9: 87[2025-05-16]. . |
| 32 | SPIRO R G. Protein glycosylation: nature, distribution, enzymatic formation, and disease implications of glycopeptide bonds[J]. Glycobiology, 2002, 12(4): 43-56. |
| 33 | 张小倩,张腾腾,闫攀,等.蛋白N-糖基化分析方法研究进展[J].生物技术进展,2019,9(3):246-252. |
| ZHANG X Q, ZHANG T T, YAN P, et al.. Advances on the analysis methods of N-glycosylation[J]. Curr. Biotechnol., 2019, 9(3): 246-252. | |
| 34 | LI H, D'ANJOU M. Pharmacological significance of glycosylation in therapeutic proteins[J]. Curr. Opin. Biotechnol., 2009, 20(6): 678-684. |
| 35 | SETHURAMAN N, STADHEIM T A. Challenges in therapeutic glycoprotein production[J]. Curr. Opin. Biotechnol., 2006, 17(4): 341-346. |
| 36 | LIU L, STADHEIM A, HAMURO L, et al.. Pharmacokinetics of IgG1 monoclonal antibodies produced in humanized Pichia pastoris with specific glycoforms: a comparative study with CHO produced materials[J]. Biologicals, 2011, 39(4): 205-210. |
| 37 | ALESSANDRI L, OUELLETTE D, ACQUAH A, et al.. Increased serum clearance of oligomannose species present on a human IgG1 molecule[J]. mAbs, 2012, 4(4): 509-520. |
| 38 | YU M, BROWN D, REED C, et al.. Production, characterization, and pharmacokinetic properties of antibodies with N-linked mannose-5 glycans[J]. mAbs, 2012, 4(4): 475-487. |
| 39 | RABINOVICH G A, VAN KOOYK Y, COBB B A. Glycobiology of immune responses[J]. Ann. NY Acad. Sci., 2012, 1253: 1-15. |
| 40 | BANERJEE K, MICHAEL E, EGGINK D, et al.. Occluding the mannose moieties on human immunodeficiency virus type 1 gp120 with griffithsin improves the antibody responses to both proteins in mice[J]. AIDS Res. Hum. Retrov., 2012, 28(2): 206-214. |
| 41 | DE VRIES R P, SMIT C H, DE BRUIN E, et al.. Glycan-dependent immunogenicity of recombinant soluble trimeric hemagglutinin[J]. J. Virol., 2012, 86(21): 11735-11744. |
| 42 | LIU L, LI H, HAMILTON S R, et al.. The impact of sialic acids on the pharmacokinetics of a PEGylated erythropoietin[J]. J. Pharm. Sci., 2012, 101(12): 4414-4418. |
| 43 | TYUEN C, STORRING P L, TIPLADY R J, et al.. Relationships between the N-glycan structures and biological activities of recombinant human erythropoietins produced using different culture conditions and purification procedures[J]. Br. J. Haematol., 2003, 121(3): 511-526. |
| 44 | HAMILTON S R, DAVIDSON R C, SETHURAMAN N, et al.. Humanization of yeast to produce complex terminally sialylated glycoproteins[J]. Science, 2006, 313(5792): 1441-1443. |
| 45 | BECK A, COCHET O, WURCH T. GlycoFi's technology to control the glycosylation of recombinant therapeutic proteins[J]. Expert Opin. Drug Discov., 2010, 5(1): 95-111. |
| 46 | BOBROWICZ P, DAVIDSON R C, LI H, et al.. Engineering of an artificial glycosylation pathway blocked in core oligosaccharide assembly in the yeast Pichia pastoris: production of complex humanized glycoproteins with terminal galactose[J]. Glycobiology, 2004, 14(9): 757-766. |
| 47 | CHOI B K, BOBROWICZ P, DAVIDSON R C, et al.. Use of combinatorial genetic libraries to humanize N-linked glycosylation in the yeast Pichia pastoris [J]. Proc. Natl. Acad. Sci. USA, 2003, 100(9): 5022-5027. |
| 48 | JACOBS P P, GEYSENS S, VERVECKEN W, et al.. Engineering complex-type N-glycosylation in Pichia pastoris using GlycoSwitch technology[J]. Nat. Protoc., 2009, 4(1): 58-70. |
| 49 | NETT J H, STADHEIM T A, LI H, et al.. A combinatorial genetic library approach to target heterologous glycosylation enzymes to the endoplasmic reticulum or the golgi apparatus of Pichia pastoris [J]. Yeast, 2011, 28(3): 237-252. |
| 50 | DAVIDSON R C, NETT J H, RENFER E, et al.. Functional analysis of the ALG3 gene encoding the dol-P-man: Man5GlcNAc2-PP-dol mannosyltransferase enzyme of P. pastoris [J]. Glycobiology, 2004, 14(5): 399-407. |
| 51 | LIU L, GOMATHINAYAGAM S, HAMURO L, et al.. The impact of glycosylation on the pharmacokinetics of a TNFR2: fc fusion protein expressed in glycoengineered Pichia pastoris [J]. Pharm. Res., 2013, 30(3): 803-812. |
| 52 | DE POURCQ K, TIELS P, VAN HECKE A, et al.. Engineering Yarrowia lipolytica to produce glycoproteins homogeneously modified with the universal Man3GlcNAc2 N-glycan core[J/OL]. PLoS ONE, 2012, 7(6): e39976[2025-05-16]. . |
| 53 | DE POURCQ K, VERVECKEN W, DEWERTE I, et al.. Engineering the yeast Yarrowia lipolytica for the production of therapeutic proteins homogeneously glycosylated with Man8GlcNAc2 and Man5GlcNAc2 [J/OL]. Microb. Cell Fact., 2012, 11: 53[2025-05-16]. . |
| 54 | ARICO C, BONNET C, JAVAUD C. N-glycosylation humanization for production of therapeutic recombinant glycoproteins in Saccharomyces cerevisiae [J]. Methods Mol. Biol., 2013, 988: 45-57. |
| 55 | CHEON S A, KIM H, BOH D, et al.. Remodeling of the glycosylation pathway in the methylotrophic yeast Hansenula polymorpha to produce human hybrid-type N-glycans[J]. J. Microbiol., 2012, 50(2): 341-348. |
| 56 | VERVECKEN W, KAIGORODOV V, CALLEWAERT N, et al.. In vivo synthesis of mammalian-like, hybrid-type N-glycans in Pichia pastoris [J]. Appl. Environ. Microbiol., 2004, 70(5): 2639-2646. |
| 57 | TANAKA N, KAGAMI A, HIRAI K, et al.. The fission yeast gmn2(+) gene encodes an ERD1 homologue of Saccharomyces cerevisiae required for protein glycosylation and retention of luminal endoplasmic reticulum proteins[J]. J. Gen. Appl. Microbiol., 2021, 67(2): 67-76. |
| 58 | UEDA K, SHIMABUKU A M, KONISHI H, et al.. Functional expression of human P-glycoprotein in Schizosaccharomyces pombe [J]. FEBS Lett., 1993, 330(3): 279-282. |
| 59 | WATANASRISIN W, IWATANI S, OURA T, et al.. Identification and characterization of Candida utilis multidrug efflux transporter CuCdr 1p[J/OL]. FEMS Yeast Res., 2016, 16(4): fow042[2025-05-16]. . |
| 60 | NETT J H, COOK W J, CHEN M T, et al.. Characterization of the Pichia pastoris protein-O-mannosyltransferase gene family[J/OL]. PLoS ONE, 2013, 8(7): e68325[2025-05-16]. . |
| 61 | LOIBL M, STRAHL S. Protein O-mannosylation: what we have learned from baker's yeast[J]. Biochim. Biophys. Acta, 2013, 1833(11): 2438-2446. |
| 62 | CUKAN M C, HOPKINS D, BURNINA I, et al.. Binding of DC-SIGN to glycoproteins expressed in glycoengineered Pichia pastoris [J]. J. Immunol. Methods, 2012, 386(1-2): 34-42. |
| 63 | AHLÉN G, STRINDELIUS L, JOHANSSON T, et al.. Mannosylated mucin-type immunoglobulin fusion proteins enhance antigen-specific antibody and T lymphocyte responses[J/OL]. PLoS ONE, 2012, 7(10): e46959[2025-05-16]. . |
| 64 | ARGYROS R, NELSON S, KULL A, et al.. A phenylalanine to serine substitution within an O-protein mannosyltransferase led to strong resistance to PMT-inhibitors in Pichia pastoris [J/OL]. PLoS ONE, 2013, 8(5): e62229[2025-05-16]. . |
| 65 | MEASE P, STRAND V, SHALAMBERIDZE L, et al.. A phase Ⅱ, double-blind, randomised, placebo-controlled study of BMS945429 (ALD518) in patients with rheumatoid arthritis with an inadequate response to methotrexate[J]. Ann. Rheum. Dis., 2012, 71(7): 1183-1189. |
| 66 | CHIGIRA Y, OKA T, OKAJIMA T, et al.. Engineering of a mammalian O-glycosylation pathway in the yeast Saccharomyces cerevisiae: production of O-fucosylated epidermal growth factor domains[J]. Glycobiology, 2008, 18(4): 303-314. |
| [1] | Jiasheng BAO, Bingzhen PAN, Qiwu QIAO, Huizhi LIU, Suhua PAN. Advances in Yeast Bioactive Substances and Their Cosmetic Efficacy [J]. Current Biotechnology, 2023, 13(3): 345-352. |
| [2] | ZHANG Rongxue§, SUN Yue§, SU Jingping, WANG Shengjun, LIU Yanqing, TONG Hui, SUN Linjing*. Progress on Plant Endoplasmic Reticulum Stress [J]. Curr. Biotech., 2021, 11(3): 289-297. |
| [3] | JIN Tong, CHEN Cheng. Research Progress on the Endoplasmic Reticulum Stress and its Mechanism in Diabetic Nephropathy [J]. Curr. Biotech., 2021, 11(1): 40-46. |
| [4] | ZHANG Xiangxiang, TENG Yantong, CHEN Tao*. Research on AtEXD Participating in Response to Salt Stress in Plant [J]. Curr. Biotech., 2021, 11(1): 61-68. |
| [5] | LI Yanhu, NIU Yaoxing, LIU Xiaoxia, GUO Juan, DENG Zhanrui, YUN Jianmin*. Optimization of Freeze-drying Microbial Agent Preparation of Direct Vat Aroma-enhancing Yeast Starter for Jiangshui Production [J]. Curr. Biotech., 2018, 8(5): 441-449. |
| [6] | WANG Ting, GE Huai-Na, GUO Hong*. Progress on Application of Yeast Two-hybrid Technique [J]. Curr. Biotech., 2015, 5(5): 392-396. |
| [7] | ZHANG Yun-peng, WEN Tong, JIANG Wei*. The Research Progress of Escherichia coli Expression Systems and Yeast Expression Systems [J]. Curr. Biotech., 2014, 4(6): 389-393. |
| [8] | CHANG Liang, LIU Xiao-zhi, MENG Ya-juan, MA Zhi-jun, GAO Jian. Progress in Engineering of Yeast Secretion System [J]. Curr. Biotech., 2013, 3(3): 185-189. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||