Current Biotechnology ›› 2023, Vol. 13 ›› Issue (2): 240-246.DOI: 10.19586/j.2095-2341.2022.0178
• Reviews • Previous Articles Next Articles
Jingyu CAO1(
), Chengmei LIU2(
), Chenxu QI1, Kaiyan DU1, Meng CHEN1, Siwei HOU2
Received:2022-11-03
Accepted:2023-01-06
Online:2023-03-25
Published:2023-04-07
Contact:
Chengmei LIU
曹静钰1(
), 刘承梅2(
), 祁晨旭1, 杜开颜1, 陈蒙1, 侯思伟2
通讯作者:
刘承梅
作者简介:曹静钰 E-mail: caojingyu97@163.com;
基金资助:CLC Number:
Jingyu CAO, Chengmei LIU, Chenxu QI, Kaiyan DU, Meng CHEN, Siwei HOU. Research Progress of Nrf2 in Ferroptosis After Spinal Cord Injury[J]. Current Biotechnology, 2023, 13(2): 240-246.
曹静钰, 刘承梅, 祁晨旭, 杜开颜, 陈蒙, 侯思伟. Nrf2在脊髓损伤后铁死亡的研究进展[J]. 生物技术进展, 2023, 13(2): 240-246.
| 1 | 陈星月,陈栋,陈春慧,等.中国创伤性脊髓损伤流行病学和疾病经济负担的系统评价[J].中国循证医学杂志,2018,18(2):143-150. |
| 2 | KARSY M, HAWRYLUK G. Modern medical management of spinal cord injury[J/OL]. Curr. Neurol. Neurosci. Rep., 2019, 19(9): 65[2022-12-23]. . |
| 3 | XIA M, ZHANG Q, ZHANG Y, et al.. Growth differentiation factor 15 regulates oxidative stress-dependent ferroptosis post spinal cord injury by stabilizing the p62-Keap1-Nrf2 signaling pathway[J/OL]. Front. Aging Neurosci., 2022, 14: 905115[2022-12-24]. . |
| 4 | YU Q, JIANG X, LIU X, et al.. Glutathione-modified macrophage-derived cell membranes encapsulated metformin nanogels for the treatment of spinal cord injury[J/OL]. Biomater. Adv., 2022, 133: 112668[2022-08-10]. . |
| 5 | SYKIOTIS G P, BOHMANN D. Stress-activated cap'n'collar transcription factors in aging and human disease[J/OL]. Sci. Signal., 2010, 3(112): re3[2022-08-10]. . |
| 6 | ZHANG Y, KHAN S, LIU Y, et al.. Modes of brain cell death following intracerebral hemorrhage[J/OL]. Front. Cell Neurosci., 2022, 16: 799753[2022-08-10]. . |
| 7 | TONELLI C, CHIO I I C, TUVESON D A. Transcriptional regulation by Nrf2[J]. Antioxid. Redox Signal., 2018, 29(17): 1727-1745. |
| 8 | 李玲瑶,张智媛,范征.以Nrf2为靶点治疗神经退行性疾病的研究进展[J].脑与神经疾病杂志,2020,28(1):48-53. |
| 9 | SASAKI H, SATO H, KURIYAMA-MATSUMURA K, et al.. Electrophile response element-mediated induction of the cystine/glutamate exchange transporter gene expression[J]. J. Biol. Chem., 2002, 277(47): 44765-44771. |
| 10 | WU K C, CUI J Y, KLAASSEN C D. Beneficial role of Nrf2 in regulating NADPH generation and consumption[J]. Toxicol. Sci., 2011, 123(2): 590-600. |
| 11 | KERINS M J, OOI A. The roles of NRF2 in modulating cellular iron homeostasis[J]. Antioxid. Redox Signal., 2018, 29(17): 1756-1773. |
| 12 | DODSON M, CASTRO-PORTUGUEZ R, ZHANG D D. NRF2 plays a critical role in mitigating lipid peroxidation and ferroptosis[J/OL]. Redox Biol., 23: 101107[2022-08-10]. . |
| 13 | ISHII T, ITOH K, TAKAHASHI S, et al.. Transcription factor Nrf2 coordinately regulates a group of oxidative stress-inducible genes in macrophages[J]. J. Biol. Chem., 2000, 275(21): 16023-16029. |
| 14 | OSBURN W O, WAKABAYASHI N, MISRA V, et al.. Nrf2 regulates an adaptive response protecting against oxidative damage following diquat-mediated formation of superoxide anion[J]. Arch. Biochem. Biophys., 2006, 454(1): 7-15. |
| 15 | 金童,陈铖.铁死亡与肾脏疾病相关性的研究进展[J].生物技术进展,2022,12(1):68-74. |
| 16 | PIANTADOSI C A, CARRAWAY M S, BABIKER A, et al.. Heme oxygenase-1 regulates cardiac mitochondrial biogenesis via Nrf2-mediated transcriptional control of nuclear respiratory factor-1[J]. Circ. Res., 2008, 103(11): 1232-1240. |
| 17 | MERRY T L, RISTOW M. Nuclear factor erythroid-derived 2-like 2 (NFE2L2, Nrf2) mediates exercise-induced mitochondrial biogenesis and the anti-oxidant response in mice[J]. J. Physiol., 2016, 594(18): 5195-5207. |
| 18 | DINKOVA-KOSTOVA A T, ABRAMOV A Y. The emerging role of Nrf2 in mitochondrial function[J]. Free Radic. Biol. Med., 2015, 88(PtB): 179-188. |
| 19 | EAST D A, FAGIANI F, CROSBY J, et al.. PMI: a ΔΨm independent pharmacological regulator of mitophagy[J]. Chem. Biol., 2014, 21(11): 1585-1596. |
| 20 | SUN Y, HE L, WANG T, et al.. Activation of p62-Keap1-Nrf2 pathway protects 6-hydroxydopamine-induced ferroptosis in dopaminergic cells[J]. Mol. Neurobiol., 2020, 57(11): 4628-4641. |
| 21 | MAO Y, DU J, CHEN X, et al.. Maltol promotes mitophagy and inhibits oxidative stress via the Nrf2/PINK1/Parkin pathway after spinal cord injury[J/OL]. Oxid. Med. Cell Longev., 2022, 2022: 1337630[2022-09-14]. . |
| 22 | DIXON S J, LEMBERG K M, LAMPRECHT M R, et al.. Ferroptosis: an iron-dependent form of nonapoptotic cell death[J]. Cell. 2012, 149(5): 1060-1072. |
| 23 | WEI N, LU T, YANG L, et al.. Lipoxin A4 protects primary spinal cord neurons from Erastin-induced ferroptosis by activating the Akt/Nrf2/HO-1 signaling pathway[J]. FEBS Open Bio., 2021, 11(8): 2118-2126. |
| 24 | 杜开颜,祁晨旭,曹静钰,等.铁死亡参与脊髓损伤调控的研究进展[J].生物技术进展,2022,12(6):869-874. |
| 25 | STOCKWELL B R, FRIEDMANN A J P, BAYIR H, et al.. Ferroptosis: a regulated cell death nexus linking metabolism[J]. Redox Biol., 2017, 171(2): 273-285. |
| 26 | GAO M, MONIAN P, QUADRI N, et al.. Glutaminolysis and transferrin regulate ferroptosis[J]. Mol. Cell, 2015, 59(2): 298-308. |
| 27 | YANG W S, KIM K J, GASCHLER M M, et al.. Peroxidation of polyunsaturated fatty acids by lipoxygenases drives ferroptosis[J]. Proc. Natl. Acad. Sci. USA, 2016, 113(34): 4966-4975. |
| 28 | SHIMADA K, SKOUTA R, KAPLAN A, et al.. Global survey of cell death mechanisms reveals metabolic regulation of ferroptosis[J]. Nat. Chem. Biol., 2016, 12(7): 497-503. |
| 29 | ABRAMS R P, CARROLL W L, WOERPEL K A. Five-membered ring peroxide selectively initiates ferroptosis in cancer cells[J]. ACS Chem. Biol., 2016, 11(5): 1305-1312. |
| 30 | YAN H F, ZOU T, TUO Q Z, et al.. Ferroptosis: mechanisms and links with diseases[J/OL]. Signal Transduct. Target Ther., 2021, 6(1): 49[2022-09-16]. . |
| 31 | DOLL S, PRONETH B, TYURINA Y Y, et al.. ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition[J]. Nat. Chem. Biol., 2017, 13(1): 91-98. |
| 32 | CONRAD M, ANGELI J P, VANDENABEELE P, et al.. Regulated necrosis: disease relevance and therapeutic opportunities[J]. Nat. Rev. Drug Discov., 2016, 15(5): 348-366. |
| 33 | YANG W S, STOCKWELL B R. Ferroptosis: death by lipid peroxidation[J]. Trends Cell Biol., 2016, 26(3): 165-176. |
| 34 | YANG W S, STOCKWELL B R. Synthetic lethal screening identifies compounds activating iron-dependent, nonapoptotic cell death in oncogenic-RAS-harboring cancer cells[J]. Chem. Biol., 2008, 15(3): 234-245. |
| 35 | ANGELI J P F, SHAH R, PRATT D A, et al.. Ferroptosis inhibition: mechanisms and opportunities[J]. Trends Pharmacol. Sci., 2017, 38(5): 489-498. |
| 36 | ANANDHAN A, DODSON M, SCHMIDLIN C J, et al.. Breakdown of an ironclad defense system: the critical role of NRF2 in mediating ferroptosis[J]. Cell Chem. Biol., 2020, 27(4): 436-447. |
| 37 | SEIBT T M, PRONETH B, CONRAD M. Role of GPX4 in ferroptosis and its pharmacological implication[J]. Free Radic. Biol. Med., 2019, 133: 144-152. |
| 38 | ZHAO X, ARONOWSKI J. Nrf2 to pre-condition the brain against injury caused by products of hemolysis after ICH[J]. Transl. Stroke Res., 2013, 4(1): 71-75. |
| 39 | HAQUE A, DAS A, SAMANTARAY S, et al.. Premarin reduces neurodegeneration and promotes improvement of function in an animal model of spinal cord injury[J/OL]. Int. J. Mol. Sci., 2022, 23(4): 2384[2022-09-16]. . |
| 40 | KO C J, GAO S L, LIN T K, et al.. Ferroptosis as a major factor and therapeutic target for neuroinflammation in Parkinson's disease[J/OL]. Biomedicines, 2021, 9(11): 1679[2022-09-16]. . |
| 41 | XIA M, ZHANG Y, WU H, et al.. Forsythoside B attenuates neuro-inflammation and neuronal apoptosis by inhibition of NF-κB and p38-MAPK signaling pathways through activating Nrf2 post spinal cord injury[J/OL]. Int. Immunopharmacol., 2022, 111: 109120[2022-09-16]. . |
| 42 | EBRAHIMY N, GASTERICH N, BEHRENS V, et al.. Neuroprotective effect of the Nrf2/ARE/miRNA145-5p signaling pathway in the early phase of spinal cord injury[J/OL]. Life Sci., 2022, 304: 120726[2022-9-18]. . |
| 43 | ZHAO W, GASTERICH N, CLARNER T, et al.. Astrocytic Nrf2 expression protects spinal cord from oxidative stress following spinal cord injury in a male mouse model[J/OL]. J. Neuroinflamm., 2022, 19(1): 134[2022-09-18]. . |
| 44 | NUNNARI J, SUOMALAINEN A. Mitochondria: in sickness and in health[J]. Cell, 2012, 148(6): 1145-1159. |
| 45 | HAYES J D, DINKOVA-KOSTOVA A T. The Nrf2 regulatory network provides an interface between redox and intermediary metabolism[J]. Trends Biochem, Sci., 2014, 39(4): 199-218. |
| 46 | KANG T C. Nuclear factor-erythroid 2-related factor 2 (Nrf2) and mitochondrial dynamics/mitophagy in neurological diseases[J/OL]. Antioxidants(Basel), 2020, 9(7): 617[2022-09-22]. . |
| 47 | WANG J, ZHANG W, LV C, et al.. A novel biscoumarin compound ameliorates cerebral ischemia reperfusion-induced mitochondrial oxidative injury via Nrf2/Keap1/ARE signaling[J/OL]. Neuropharmacology, 2020, 167: 107918[2022-09-22]. . |
| 48 | TAKEDA H, YAMAGUCHI T, YANO H, et al.. Microglial metabolic disturbances and neuroinflammation in cerebral infarction[J]. J. Pharmacol. Sci., 2021, 145(1): 130-139. |
| 49 | VANDEN B T, LINKERMANN A, JOUAN-LANHOUET S, et al.. Regulated necrosis: the expanding network of non-apoptotic cell death pathways[J]. Nat. Rev. Mol. Cell Biol., 2014, 15(2): 135-147. |
| 50 | HEINE K B, HOOD W R. Mitochondrial behaviour, morphology, and animal performance[J]. Biol. Rev. Camb. Philos. Soc., 2020, 95(3): 730-737. |
| 51 | GE M H, TIAN H, MAO L, et al.. Zinc attenuates ferroptosis and promotes functional recovery in contusion spinal cord injury by activating Nrf2/GPX4 defense pathway[J]. CNS Neurosci. Ther., 2021, 27(9): 1023-1040. |
| 52 | CHEN Y, LIU S, LI J, et al.. The latest view on the mechanism of ferroptosis and its research progress in spinal cord injury[J/OL]. Oxid Med. Cell Longev., 2020, 2020: 6375938[2022-12-24]. . |
| 53 | FENG Z, MIN L, CHEN H, et al.. Iron overload in the motor cortex induces neuronal ferroptosis following spinal cord injury[J/OL]. Redox Biol., 2021, 43: 101984[2022-09-27]. . |
| 54 | JIA Z, ZHU H, LI J, et al.. Oxidative stress in spinal cord injury and antioxidant-based intervention[J]. Spinal Cord, 2012, 50(4): 264-274. |
| 55 | MAO L, WANG H D, WANG X L, et al.. Disruption of Nrf2 exacerbated the damage after spinal cord injury in mice[J]. J. Trauma Acute Care Surg., 2012, 72(1): 189-198. |
| 56 | YAN N, XU Z, QU C, et al.. Dimethyl fumarate improves cognitive deficits in chronic cerebral hypoperfusion rats by alleviating inflammation, oxidative stress, and ferroptosis via NRF2/ARE/NF-κB signal pathway[J/OL]. Int. Immunopharmacol., 2021, 98: 107844[2022-10-10]. . |
| 57 | 张振.Nrf2/HO-1信号通路在人参皂苷Rg1作用于脊髓损伤中的机制研究[D].湖北十堰:湖北医药学院,2022. |
| 58 | FENG H, SCHORPP K, JIN J, et al.. Transferrin receptor is a specific ferroptosis marker[J]. Cell Rep., 2020, 30(10): 3411-3423. |
| 59 | HARADA N, KANAYAMA M, MARUYAMA A, et al.. Nrf2 regulates ferroportin 1-mediated iron efflux and counteracts lipopolysaccharide-induced ferroportin 1 mRNA suppression in macrophages[J]. Arch Biochem. Biophys., 2011, 508(1): 101-109. |
| 60 | 郭淑慧,杨晔,江杨洋,等.神经源性膀胱miRNA-mRNA调控网络的筛选与验证[J].中国组织工程研究,2023,27(20):3143-3150. |
| [1] | Chuancai LIANG, Bo QIU. Echinoside Inhibits IL-1β-induced Chondrocytes Iron Death Through Nrf2/HO-1 Pathway [J]. Current Biotechnology, 2025, 15(4): 720-725. |
| [2] | Tianyuan ZHAO, Jing WANG, Yulu WANG, Chunsen YUAN, Xuechai CHEN. Research Progress on Neuroprotective Effects of Betaine [J]. Current Biotechnology, 2025, 15(2): 220-225. |
| [3] | Changze LI, Shuai LIU, Tongxiang DIAO, Keqin ZHANG, Dingqi SUN, Hui ZHANG. Fermented Epimedium Improves Sperm Deficiency Model in Mice: Effects and Mechanisms [J]. Current Biotechnology, 2025, 15(1): 170-175. |
| [4] | Jianhong YANG, Boyan LIU, Jun CHEN, Zhihui QIU, Baoqiang LI, Shucun QIN, Yandong NIU, Lei HE. Effects of Pre-treatment of Nanobubble Hydrogen Water on the Mouse Psoriasis Induction by Imiquimod [J]. Current Biotechnology, 2024, 14(4): 676-684. |
| [5] | Jianhong YANG, Jun CHEN, Xuefei LI, Lijun LIU, Lili CHEN, Xinsuo DUAN, Shucun QIN, Lei HE. The Potential and Prospect of Molecular Hydrogen in the Treatment of Skin Diseases [J]. Current Biotechnology, 2023, 13(6): 875-881. |
| [6] | Junkai ZHU, Lingzhi GE, Chao ZHANG, Can CAO, Jiahui WU, Zhen MU. Inhibitory Effect of Hydrogen Molecule on Imiquimod-induced Psoriasis-like Dermatitis in Mice [J]. Current Biotechnology, 2023, 13(6): 945-953. |
| [7] | Mingjiao ZHANG, Jiefu ZHU, Xiongfei WU. Cell Death in Cisplatin-induced Kidney Injury [J]. Current Biotechnology, 2023, 13(5): 718-724. |
| [8] | Shiming LI, Peng ZHANG, Pengxiang ZHAO, Fei XIE, Xiaoping CHEN, Mengyu LIU. Research Progress of Oxidative Stress and Disuse Muscular Atrophy [J]. Current Biotechnology, 2023, 13(4): 524-533. |
| [9] | Zhen WANG, Kerang HUANG, Lei CHEN, Min ZHOU, Yuanxia XUE. Effect of Erastin on the Ultrastructure of Granular Cells by High Pressure Freezing-freezing Substitution Technology [J]. Current Biotechnology, 2023, 13(4): 637-644. |
| [10] | Li CAO, Shun LUO, Shihai XING, Jinshu QIU, Zhiyong LIN, Jun LIN, Xu MENG, Feng LIU. Effects of Dioscorea opposita Extract on CHO Cell Growth and Monoclonal Antibody Expression [J]. Current Biotechnology, 2023, 13(3): 449-456. |
| [11] | Yanrong WANG, Yuanbiao GUO. Construction of a Prognostic Signature for Hepatocellular Carcinoma Based on Ferroptosis-related LncRNAs [J]. Current Biotechnology, 2023, 13(3): 473-481. |
| [12] | Kaiyan DU, Chenxu QI, Jingyu CAO, Meng CHEN, Jing GAO, Chengmei LIU. Research Progress on the Regulatory Mechanism of Ferroptosis in Spinal Cord Injury [J]. Current Biotechnology, 2022, 12(6): 869-874. |
| [13] | Jun CHEN, Shucun QIN, Lei HE. Inhibiting Effect of Hydrogen-rich Saline on Psoriasis in Imiquimod-induced Mouse Models [J]. Current Biotechnology, 2022, 12(4): 503-509. |
| [14] | Yichao LIU, Chao LU, Yuhua ZHAN, Xiubin KE, Wei LU, Yongliang YAN. Expressional and Functional Characterization of the Ferric Uptake Regulator Fur in Pseudomonas stutzeri A1501 [J]. Current Biotechnology, 2022, 12(3): 387-395. |
| [15] | Tong JIN, Cheng CHEN. Research Progress on the Correlation Between Ferroptosis and Kidney Disease [J]. Current Biotechnology, 2022, 12(1): 68-74. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||