Current Biotechnology ›› 2023, Vol. 13 ›› Issue (5): 718-724.DOI: 10.19586/j.2095-2341.2023.0036
• Reviews • Previous Articles Next Articles
Mingjiao ZHANG(
), Jiefu ZHU, Xiongfei WU(
)
Received:2023-03-24
Accepted:2023-07-25
Online:2023-09-25
Published:2023-10-10
Contact:
Xiongfei WU
通讯作者:
吴雄飞
作者简介:张明娇 E-mail: 2296012678@qq.com;
基金资助:CLC Number:
Mingjiao ZHANG, Jiefu ZHU, Xiongfei WU. Cell Death in Cisplatin-induced Kidney Injury[J]. Current Biotechnology, 2023, 13(5): 718-724.
张明娇, 朱杰夫, 吴雄飞. 顺铂诱导的肾损伤中的细胞死亡[J]. 生物技术进展, 2023, 13(5): 718-724.
| RCD方式 | 作用 | 相关分子/机制 | 干预 | 治疗方案 | 参考文献 |
|---|---|---|---|---|---|
| 细胞凋亡 | 抑制 | ERK1/2 | Panduratin A | 靶向抑制ERK1/2 | [ |
| 细胞凋亡 | 抑制 | RCAN1/JNK/Mff | RCAN1条件敲除 | 靶向抑制RCAN1 | [ |
| 细胞凋亡 | 抑制 | TAK1/JNK | TAK1 敲除 | 靶向抑制TAK1 | [ |
| 细胞凋亡 | 抑制 | AMPK/p53/Bax | AMPK选择性抑制剂 | 靶向抑制AMPK | [ |
| 细胞凋亡 | 抑制 | Sirt-1/p53/Bax | 奎那克林 | 靶向激活Sirt-1 | [ |
| 细胞凋亡 | 促进 | Sirt-3/Caspase-3 | Sirt-3敲除 | 靶向激活Sirt-3 | [ |
| 细胞凋亡 | 促进/抑制 | Nrf2、 HO-1、 Bcl-2、 Bax | Sirt-5 siRNA/过表达 | 靶向激活Sirt-5 | [ |
| 坏死性凋亡 | 抑制 | RIPK3 | RIPK3抑制剂 | 靶向抑制RIPK3 | [ |
| 坏死性凋亡 | 抑制 | Smad3 | Smad3敲除 | 靶向抑制Smad3 | [ |
| 坏死性凋亡 | 抑制 | Caspase-3、 JNK/ERK/p38 | 坏死抑素 | 应用坏死抑素 | [ |
| 细胞凋亡、坏死性凋亡、铁死亡 | 促进/抑制 | Rheb1 | Rheb1敲除/Tsc 1单倍体 | 靶向激活Rheb1 | [ |
| 焦亡 | 抑制 | GSDMD/IL-18 | GSDMD敲除 | 靶向抑制GSDMD | [ |
| 焦亡 | 抑制 | NF-κB/NLRP3/Caspase-1/GSDMD | VDR激动剂 | 激动VDR | [ |
| 铁死亡 | 抑制 | GPX4 | VDR激动剂 | 激动VDR | [ |
| 铁死亡 | 促进 | Nrf2 | Nrf2敲除 | 靶向激活Nrf2 | [ |
| 细胞凋亡 | 抑制 | Caspase-3 | Dpep1敲除 | 靶向抑制Dpep1 | [ |
| 铁死亡 | 抑制 促进 | 脂质过氧化较少 | Dpep1敲除 | 靶向抑制Dpep1 | [ |
| 铁死亡 | 脂质过氧化增加 | Chmp1a敲除 | 靶向激活Chmp1a | [ | |
| 铁死亡 | 抑制 | FXR | FXR激动剂 | 靶向激活FXR | [ |
| 铁死亡 | 抑制 | Cx43 | Cx43沉默/Cx43抑制剂 | 靶向抑制Cx43 | [ |
| 铁死亡 | 抑制 | GPX4 | TDN | 应用TDN | [ |
Table 1 RCD in CDDP-induced kidney injury
| RCD方式 | 作用 | 相关分子/机制 | 干预 | 治疗方案 | 参考文献 |
|---|---|---|---|---|---|
| 细胞凋亡 | 抑制 | ERK1/2 | Panduratin A | 靶向抑制ERK1/2 | [ |
| 细胞凋亡 | 抑制 | RCAN1/JNK/Mff | RCAN1条件敲除 | 靶向抑制RCAN1 | [ |
| 细胞凋亡 | 抑制 | TAK1/JNK | TAK1 敲除 | 靶向抑制TAK1 | [ |
| 细胞凋亡 | 抑制 | AMPK/p53/Bax | AMPK选择性抑制剂 | 靶向抑制AMPK | [ |
| 细胞凋亡 | 抑制 | Sirt-1/p53/Bax | 奎那克林 | 靶向激活Sirt-1 | [ |
| 细胞凋亡 | 促进 | Sirt-3/Caspase-3 | Sirt-3敲除 | 靶向激活Sirt-3 | [ |
| 细胞凋亡 | 促进/抑制 | Nrf2、 HO-1、 Bcl-2、 Bax | Sirt-5 siRNA/过表达 | 靶向激活Sirt-5 | [ |
| 坏死性凋亡 | 抑制 | RIPK3 | RIPK3抑制剂 | 靶向抑制RIPK3 | [ |
| 坏死性凋亡 | 抑制 | Smad3 | Smad3敲除 | 靶向抑制Smad3 | [ |
| 坏死性凋亡 | 抑制 | Caspase-3、 JNK/ERK/p38 | 坏死抑素 | 应用坏死抑素 | [ |
| 细胞凋亡、坏死性凋亡、铁死亡 | 促进/抑制 | Rheb1 | Rheb1敲除/Tsc 1单倍体 | 靶向激活Rheb1 | [ |
| 焦亡 | 抑制 | GSDMD/IL-18 | GSDMD敲除 | 靶向抑制GSDMD | [ |
| 焦亡 | 抑制 | NF-κB/NLRP3/Caspase-1/GSDMD | VDR激动剂 | 激动VDR | [ |
| 铁死亡 | 抑制 | GPX4 | VDR激动剂 | 激动VDR | [ |
| 铁死亡 | 促进 | Nrf2 | Nrf2敲除 | 靶向激活Nrf2 | [ |
| 细胞凋亡 | 抑制 | Caspase-3 | Dpep1敲除 | 靶向抑制Dpep1 | [ |
| 铁死亡 | 抑制 促进 | 脂质过氧化较少 | Dpep1敲除 | 靶向抑制Dpep1 | [ |
| 铁死亡 | 脂质过氧化增加 | Chmp1a敲除 | 靶向激活Chmp1a | [ | |
| 铁死亡 | 抑制 | FXR | FXR激动剂 | 靶向激活FXR | [ |
| 铁死亡 | 抑制 | Cx43 | Cx43沉默/Cx43抑制剂 | 靶向抑制Cx43 | [ |
| 铁死亡 | 抑制 | GPX4 | TDN | 应用TDN | [ |
| 1 | BASU A, KRISHNAMURTHY S. Cellular responses to Cisplatin-induced DNA damage[J/OL]. J. Nucleic Acids, 2010, 2010: 201367[2023-3-24]. . |
| 2 | COURJAULT-GAUTIER F, LE GRIMELLEC C, GIOCONDI M C, et al.. Modulation of sodium-coupled uptake and membrane fluidity by cisplatin in renal proximal tubular cells in primary culture and brush-border membrane vesicles[J]. Kidney Int., 1995, 47(4): 1048-1056. |
| 3 | IQBAL M O, SIAL A S, AKHTAR I, et al.. The nephroprotective effects of Daucus carota and Eclipta prostrata against cisplatin-induced nephrotoxicity in rats[J]. Bioengineered, 2021, 12(2): 12702-12721. |
| 4 | VOLOVAT S, APETRII M, STEFAN A, et al.. Cisplatin and AKI: an ongoing battle with new perspectives-a narrative review[J]. Int. Urol. Nephrol., 2023, 55(5): 1205-1209. |
| 5 | DELRE D P, AMGALAN D, LINKERMANN A, et al.. Fundamental mechanisms of regulated cell death and implications for heart disease[J]. Physiol. Rev., 2019, 99(4): 1765-1817. |
| 6 | FUCHS Y, STELLER H. Programmed cell death in animal development and disease[J]. Cell, 2011, 147(4): 742-758. |
| 7 | FAN T J, HAN L H, CONG R S, et al.. Caspase family proteases and apoptosis[J]. Acta Biochim. Biophys. Sin., 2005, 37(11): 719-727. |
| 8 | GREEN D R. The mitochondrial pathway of apoptosis: Part I: MOMP and beyond[J/OL]. Cold Spring Harb. Perspect. Biol., 2022, 14(5): a041038[2023-03-24]. . |
| 9 | TANZER M C, FRAUENSTEIN A, STAFFORD C A, et al.. Quantitative and dynamic catalogs of proteins released during apoptotic and necroptotic cell death[J]. Cell Rep., 2020, 30(4): 1260-1270. |
| 10 | LIU X, KIM C N, YANG J, et al.. Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome C[J]. Cell, 1996, 86(1): 147-157. |
| 11 | GON S, GATANAGA T, SENDO F. Involvement of two types of TNF receptor in TNF-alpha induced neutrophil apoptosis[J]. Microbiol. Immunol., 1996, 40(6): 463-465. |
| 12 | SCHNEIDER P, BODMER J L, HOLLER N, et al.. Characterization of fas (apo-1, CD95)-fas ligand interaction[J]. J. Biol. Chem., 1997, 272(30): 18827-18833. |
| 13 | PAN G, O'ROURKE K, CHINNAIYAN A M, et al.. The receptor for the cytotoxic ligand TRAIL[J]. Science, 1997, 276(5309): 111-113. |
| 14 | TCHIKOV V, SCHÜTZE S. Immunomagnetic isolation of tumor necrosis factor receptosomes[J]. Methods Enzymol., 2008, 442: 101-123. |
| 15 | SHIRLEY S, MICHEAU O. Targeting c-FLIP in cancer[J]. Cancer Lett., 2013, 332(2): 141-150. |
| 16 | YUAN S, AKEY C W. Apoptosome structure, assembly, and procaspase activation[J]. Structure, 2013, 21(4): 501-515. |
| 17 | THONGNUANJAN P, SOODVILAI S, FONGSUPA S, et al.. Panduratin A derivative protects against cisplatin-induced apoptosis of renal proximal tubular cells and kidney injury in mice[J/OL]. Molecules, 2021, 26(21): 6642[2023-03-24]. . |
| 18 | XIAO J J, LIU Q, LI Y, et al.. Regulator of calcineurin 1 deletion attenuates mitochondrial dysfunction and apoptosis in acute kidney injury through JNK/Mff signaling pathway[J/OL]. Cell Death Dis., 2022, 13(9): 774[2023-03-24]. . |
| 19 | ZHOU J, AN C, JIN X, et al.. TAK1 deficiency attenuates cisplatin-induced acute kidney injury[J]. Am. J. Physiol. Renal Physiol., 2020, 318(1): 209-215. |
| 20 | JIN X, AN C, JIAO B, et al.. AMP-activated protein kinase contributes to cisplatin-induced renal epithelial cell apoptosis and acute kidney injury[J]. Am. J. Physiol. Renal Physiol., 2020, 319(6): 1073-1080. |
| 21 | FABO EL-MAGD N, EBRAHIM HALI, EL-SHERBINY M, et al.. Quinacrine ameliorates cisplatin-induced renal toxicity via modulation of sirtuin-1 pathway[J/OL]. Int. J. Mol. Sci., 2021, 22(19): 10660[2023-03-24]. . |
| 22 | KIM D, PARK W, LEE S, et al.. Absence of Sirt3 aggravates cisplatin nephrotoxicity via enhanced renal tubular apoptosis and inflammation[J]. Mol. Med. Rep., 2018, 18(4): 3665-3672. |
| 23 | LI W, YANG Y, LI Y, et al.. Sirt5 attenuates cisplatin-induced acute kidney injury through regulation of Nrf2/HO-1 and bcl-2[J/OL]. Biomed. Res. Int., 2019, 2019: 4745132[2023-03-24]. . |
| 24 | HE X Y, WANG F, SUO X G, et al.. Compound-42 alleviates acute kidney injury by targeting RIPK3-mediated necroptosis[J]. Br. J. Pharmacol., 2023, 180(20): 2641-2660. |
| 25 | YANG Q, GAO L, HU X W, et al.. Smad3-targeted therapy protects against cisplatin-induced AKI by attenuating programmed cell death and inflammation via a NOX4-dependent mechanism[J]. Kidney Dis., 2021, 7(5): 372-390. |
| 26 | LEE D, YAMABE N, LEE H, et al.. Necrostatins regulate apoptosis, necroptosis, and inflammation in cisplatin-induced nephrotoxicity in LLC-PK1 cells[J/OL]. Bioorg. Med. Chem. Lett., 2021, 48: 128256[2023-03-24]. . |
| 27 | LU Q, WANG M, GUI Y, et al.. Rheb1 protects against cisplatin-induced tubular cell death and acute kidney injury via maintaining mitochondrial homeostasis[J/OL]. Cell Death Dis., 2020, 11(5): 364[2023-03-24]. . |
| 28 | MIAO N, YIN F, XIE H, et al.. The cleavage of gasdermin D by caspase-11 promotes tubular epithelial cell pyroptosis and urinary IL-18 excretion in acute kidney injury[J]. Kidney Int., 2019, 96(5): 1105-1120. |
| 29 | JIANG S, ZHANG H, LI X, et al.. Vitamin D/VDR attenuate cisplatin-induced AKI by down-regulating NLRP3/caspase-1/GSDMD pyroptosis pathway[J/OL]. J. Steroid. Biochem. Mol. Biol., 2021, 206: 105789[2023-03-24]. . |
| 30 | HU Z, ZHANG H, YI B, et al.. VDR activation attenuate cisplatin induced AKI by inhibiting ferroptosis[J/OL]. Cell Death Dis., 2020, 11(1): 73[2023-03-24]. . |
| 31 | HU J, GU W, MA N, et al.. Leonurine alleviates ferroptosis in cisplatin-induced acute kidney injury by activating the Nrf2 signalling pathway[J]. Br. J. Pharmacol., 2022, 179(15): 3991-4009. |
| 32 | GUAN Y, LIANG X, MA Z, et al.. A single genetic locus controls both expression of DPEP1/CHMP1A and kidney disease development via ferroptosis[J/OL]. Nat. Commun., 2021, 12(1): 5078[2023-03-24]. . |
| 33 | KIM D-H, H-ICHOI, PARK J S, et al.. Farnesoid X receptor protects against cisplatin-induced acute kidney injury by regulating the transcription of ferroptosis-related genes[J/OL]. Redox Biol., 2022, 54: 102382[2023-03-24]. . |
| 34 | YU M, LIN Z, TIAN X, et al.. Downregulation of Cx43 reduces cisplatin-induced acute renal injury by inhibiting ferroptosis[J/OL]. Food Chem. Toxicol., 2021, 158: 112672[2023-03-24]. . |
| 35 | LI J, WEI L, ZHANG Y, et al.. Tetrahedral DNA nanostructures inhibit ferroptosis and apoptosis in cisplatin-induced renal injury[J]. ACS Appl. Bio. Mater., 2021, 4(6): 5026-5032. |
| 36 | BRAULT M, OLSEN T M, MARTINEZ J, et al.. Intracellular nucleic acid sensing triggers necroptosis through synergistic type I IFN and TNF signaling[J]. J. Immunol., 2018, 200(8): 2748-2756. |
| 37 | ORNING P, LIEN E. Multiple roles of caspase-8 in cell death, inflammation, and innate immunity[J]. J. Leukoc. Biol., 2021, 109(1): 121-141. |
| 38 | XU Y, MA H, SHAO J, et al.. A role for tubular necroptosis in cisplatin-induced AKI[J]. J. Am. Soc. Nephrol., 2015, 26(11): 2647-2658. |
| 39 | SHI J, GAO W, SHAO F. Pyroptosis: gasdermin-mediated programmed necrotic cell death[J]. Trends Biochem. Sci., 2017, 42(4): 245-254. |
| 40 | NARAYANAN K B, PARK H H. Purification and analysis of the interactions of caspase-1 and ASC for assembly of the inflammasome[J]. Appl. Biochem. Biotechnol., 2015, 175(6): 2883-2894. |
| 41 | KASAHARA Y, TUDER R M, COOL C D, et al.. Endothelial cell death and decreased expression of vascular endothelial growth factor and vascular endothelial growth factor receptor 2 in emphysema[J]. Am. J. Respir. Crit. Care Med., 2001, 163(3 Pt 1): 737-744. |
| 42 | YANG J, LIU Z, WANG C, et al.. Mechanism of gasdermin D recognition by inflammatory caspases and their inhibition by a gasdermin D-derived peptide inhibitor[J]. Proc. Natl. Acad. Sci. USA, 2018, 115(26): 6792-6797. |
| 43 | BARTALESI B, CAVARRA E, FINESCHI S, et al.. Different lung responses to cigarette smoke in two strains of mice sensitive to oxidants[J]. Eur. Respir. J., 2005, 25(1): 15-22. |
| 44 | WPARK J, RYTER S W, CHOI A M K. Functional significance of apoptosis in chronic obstructive pulmonary disease[J]. J. Chron. Obstruct. Pulmon. Dis., 2007, 4(4): 347-353. |
| 45 | BADR A M, AL-KHARASHI L A, ATTIA H, et al.. TLR4/inflammasomes cross-talk and pyroptosis contribute to N-acetyl cysteine and chlorogenic acid protection against cisplatin-induced nephrotoxicity[J/OL]. Pharmaceuticals, 2023, 16(3): 337[2023-03-24]. . |
| 46 | SHEN X, WANG H, WENG C, et al.. Caspase 3/GSDME-dependent pyroptosis contributes to chemotherapy drug-induced nephrotoxicity[J/OL]. Cell Death Dis., 2021, 12(2): 186[2023-03-24]. . |
| 47 | DENG F, ZHENG X, SHARMA I, et al.. Regulated cell death in cisplatin-induced AKI: relevance of myo-inositol metabolism[J]. Am. J. Physiol. Renal Physiol., 2021, 320(4): 578-595. |
| 48 | URSINI F, MAIORINO M. Lipid peroxidation and ferroptosis: the role of GSH and GPx4[J]. Free Radic. Biol. Med., 2020, 152: 175-185. |
| 49 | SEIBT T M, PRONETH B, CONRAD M. Role of GPX4 in ferroptosis and its pharmacological implication[J]. Free Radic. Biol. Med., 2019, 133: 144-152. |
| 50 | WANG L, LIU Y, DU T, et al.. ATF3 promotes erastin-induced ferroptosis by suppressing system Xc[J]. Cell Death Differ., 2020, 27(2): 662-675. |
| 51 | XIE Y, HOU W, SONG X, et al.. Ferroptosis: process and function[J]. Cell Death Differ., 2016, 23(3): 369-379. |
| 52 | LIU N, LIN X, HUANG C. Activation of the reverse transsulfuration pathway through NRF2/CBS confers erastin-induced ferroptosis resistance[J]. Br. J. Cancer, 2020, 122(2): 279-292. |
| 53 | IKEDA Y, HAMANO H, HORINOUCHI Y, et al.. Role of ferroptosis in cisplatin-induced acute nephrotoxicity in mice[J/OL]. J. Trace Elem. Med. Biol., 2021, 67: 126798[2023-03-24]. . |
| 54 | MARTIN-SANCHEZ D, RUIZ-ANDRES O, POVEDA J, et al.. Ferroptosis, but not necroptosis, is important in nephrotoxic folic acid-induced AKI[J]. J. Am. Soc. Nephrol., 2017, 28(1): 218-229. |
| [1] | Lina ZHU, Zhiling SONG. Autophagy and Apoptosis: Interactions and Their Role in Disease [J]. Current Biotechnology, 2025, 15(4): 622-626. |
| [2] | Yu DING, Bo ZHAO, Jin ZHANG, Xudong GAO. The Role of SIRT1 Deacetylation Modification in Regulating HMGB1-mediated Pyroptosis in Chronic Sinusitis with Nasal Polyps [J]. Current Biotechnology, 2025, 15(3): 535-543. |
| [3] | Geyemuri WU, Jianqiang WU. Anti-tumor Effects of Gentian Violet [J]. Current Biotechnology, 2025, 15(2): 226-233. |
| [4] | Yanjie WANG, Bo QIU. The Role and Research Progress of Gene P53 in Osteosarcoma [J]. Current Biotechnology, 2025, 15(2): 241-246. |
| [5] | Xuan ZHAO, Limei REN, Xiaoru WANG, Guangxin HAN, Dandan GU, Yasen YAO, Yonghao QI. Effects of siRNA Targeting to Interfere with the Expression of TRAF6 on the Proliferation and Apoptosis of Lung Cancer Cells [J]. Current Biotechnology, 2024, 14(5): 875-881. |
| [6] | Shuang WEI, Weisong GAO, Jinping DOU, Zepeng ZHAO, Xingjian LIU, Yinyu LI. Molecular Mechanism and Regulation of Pyroptosis [J]. Current Biotechnology, 2023, 13(6): 868-874. |
| [7] | Zhen WANG, Kerang HUANG, Lei CHEN, Min ZHOU, Yuanxia XUE. Effect of Erastin on the Ultrastructure of Granular Cells by High Pressure Freezing-freezing Substitution Technology [J]. Current Biotechnology, 2023, 13(4): 637-644. |
| [8] | Ying TANG, Jianqiang WU. Anti-tumor Effects of Phenylethanoid Glycosides Deprived from Cistanche deserticola [J]. Current Biotechnology, 2023, 13(3): 399-405. |
| [9] | Yanrong WANG, Yuanbiao GUO. Construction of a Prognostic Signature for Hepatocellular Carcinoma Based on Ferroptosis-related LncRNAs [J]. Current Biotechnology, 2023, 13(3): 473-481. |
| [10] | Jingyi ZHANG, Xue JIANG, Siyu MA, Zhichao FENG, Yang YI, Chen MA, Yifei SONG, Fei XIE. Research Progress on the Protective Effects of Hydrogen Gas on Traumatic Brain Injury [J]. Current Biotechnology, 2023, 13(2): 234-239. |
| [11] | Jingyu CAO, Chengmei LIU, Chenxu QI, Kaiyan DU, Meng CHEN, Siwei HOU. Research Progress of Nrf2 in Ferroptosis After Spinal Cord Injury [J]. Current Biotechnology, 2023, 13(2): 240-246. |
| [12] | Yuzhen LI, Jiefu ZHU, Xiongfei WU. The Role of PIM1 Kinase in Cisplatin-induced Acute Kidney Injury [J]. Current Biotechnology, 2023, 13(2): 298-304. |
| [13] | Wanling HUANG, Wenqi ZHU, Nini GUO, Nan WANG, Qian REN, Xiaotong MA. Effects of NRG4 on Proliferation, Apoptosis and Cell Cycle of Acute Myeloid Leukemia Cells [J]. Current Biotechnology, 2023, 13(2): 305-310. |
| [14] | Yunyan SHEN, Qi QIU. Effects of Melatonin Combined with Cisplatin on Proliferation, Apoptosis and Invasion of Cervical Cancer HeLa Cells [J]. Current Biotechnology, 2023, 13(2): 311-317. |
| [15] | Shibo WANG, Jinjuan LIU. Study on Antioxidant Activity and Inhibitory Effect of Banana Peel on HepG2 Cells [J]. Current Biotechnology, 2023, 13(1): 140-145. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||