Current Biotechnology ›› 2023, Vol. 13 ›› Issue (2): 240-246.DOI: 10.19586/j.2095-2341.2022.0178
• Reviews • Previous Articles Next Articles
					
													Jingyu CAO1( ), Chengmei LIU2(
), Chengmei LIU2( ), Chenxu QI1, Kaiyan DU1, Meng CHEN1, Siwei HOU2
), Chenxu QI1, Kaiyan DU1, Meng CHEN1, Siwei HOU2
												  
						
						
						
					
				
Received:2022-11-03
															
							
															
							
																	Accepted:2023-01-06
															
							
																	Online:2023-03-25
															
							
																	Published:2023-04-07
															
						Contact:
								Chengmei LIU   
													
        
               		曹静钰1( ), 刘承梅2(
), 刘承梅2( ), 祁晨旭1, 杜开颜1, 陈蒙1, 侯思伟2
), 祁晨旭1, 杜开颜1, 陈蒙1, 侯思伟2
                  
        
        
        
        
    
通讯作者:
					刘承梅
							作者简介:曹静钰 E-mail: caojingyu97@163.com;
				
							基金资助:CLC Number:
Jingyu CAO, Chengmei LIU, Chenxu QI, Kaiyan DU, Meng CHEN, Siwei HOU. Research Progress of Nrf2 in Ferroptosis After Spinal Cord Injury[J]. Current Biotechnology, 2023, 13(2): 240-246.
曹静钰, 刘承梅, 祁晨旭, 杜开颜, 陈蒙, 侯思伟. Nrf2在脊髓损伤后铁死亡的研究进展[J]. 生物技术进展, 2023, 13(2): 240-246.
| 1 | 陈星月,陈栋,陈春慧,等.中国创伤性脊髓损伤流行病学和疾病经济负担的系统评价[J].中国循证医学杂志,2018,18(2):143-150. | 
| 2 | KARSY M, HAWRYLUK G. Modern medical management of spinal cord injury[J/OL]. Curr. Neurol. Neurosci. Rep., 2019, 19(9): 65[2022-12-23]. . | 
| 3 | XIA M, ZHANG Q, ZHANG Y, et al.. Growth differentiation factor 15 regulates oxidative stress-dependent ferroptosis post spinal cord injury by stabilizing the p62-Keap1-Nrf2 signaling pathway[J/OL]. Front. Aging Neurosci., 2022, 14: 905115[2022-12-24]. . | 
| 4 | YU Q, JIANG X, LIU X, et al.. Glutathione-modified macrophage-derived cell membranes encapsulated metformin nanogels for the treatment of spinal cord injury[J/OL]. Biomater. Adv., 2022, 133: 112668[2022-08-10]. . | 
| 5 | SYKIOTIS G P, BOHMANN D. Stress-activated cap'n'collar transcription factors in aging and human disease[J/OL]. Sci. Signal., 2010, 3(112): re3[2022-08-10]. . | 
| 6 | ZHANG Y, KHAN S, LIU Y, et al.. Modes of brain cell death following intracerebral hemorrhage[J/OL]. Front. Cell Neurosci., 2022, 16: 799753[2022-08-10]. . | 
| 7 | TONELLI C, CHIO I I C, TUVESON D A. Transcriptional regulation by Nrf2[J]. Antioxid. Redox Signal., 2018, 29(17): 1727-1745. | 
| 8 | 李玲瑶,张智媛,范征.以Nrf2为靶点治疗神经退行性疾病的研究进展[J].脑与神经疾病杂志,2020,28(1):48-53. | 
| 9 | SASAKI H, SATO H, KURIYAMA-MATSUMURA K, et al.. Electrophile response element-mediated induction of the cystine/glutamate exchange transporter gene expression[J]. J. Biol. Chem., 2002, 277(47): 44765-44771. | 
| 10 | WU K C, CUI J Y, KLAASSEN C D. Beneficial role of Nrf2 in regulating NADPH generation and consumption[J]. Toxicol. Sci., 2011, 123(2): 590-600. | 
| 11 | KERINS M J, OOI A. The roles of NRF2 in modulating cellular iron homeostasis[J]. Antioxid. Redox Signal., 2018, 29(17): 1756-1773. | 
| 12 | DODSON M, CASTRO-PORTUGUEZ R, ZHANG D D. NRF2 plays a critical role in mitigating lipid peroxidation and ferroptosis[J/OL]. Redox Biol., 23: 101107[2022-08-10]. . | 
| 13 | ISHII T, ITOH K, TAKAHASHI S, et al.. Transcription factor Nrf2 coordinately regulates a group of oxidative stress-inducible genes in macrophages[J]. J. Biol. Chem., 2000, 275(21): 16023-16029. | 
| 14 | OSBURN W O, WAKABAYASHI N, MISRA V, et al.. Nrf2 regulates an adaptive response protecting against oxidative damage following diquat-mediated formation of superoxide anion[J]. Arch. Biochem. Biophys., 2006, 454(1): 7-15. | 
| 15 | 金童,陈铖.铁死亡与肾脏疾病相关性的研究进展[J].生物技术进展,2022,12(1):68-74. | 
| 16 | PIANTADOSI C A, CARRAWAY M S, BABIKER A, et al.. Heme oxygenase-1 regulates cardiac mitochondrial biogenesis via Nrf2-mediated transcriptional control of nuclear respiratory factor-1[J]. Circ. Res., 2008, 103(11): 1232-1240. | 
| 17 | MERRY T L, RISTOW M. Nuclear factor erythroid-derived 2-like 2 (NFE2L2, Nrf2) mediates exercise-induced mitochondrial biogenesis and the anti-oxidant response in mice[J]. J. Physiol., 2016, 594(18): 5195-5207. | 
| 18 | DINKOVA-KOSTOVA A T, ABRAMOV A Y. The emerging role of Nrf2 in mitochondrial function[J]. Free Radic. Biol. Med., 2015, 88(PtB): 179-188. | 
| 19 | EAST D A, FAGIANI F, CROSBY J, et al.. PMI: a ΔΨm independent pharmacological regulator of mitophagy[J]. Chem. Biol., 2014, 21(11): 1585-1596. | 
| 20 | SUN Y, HE L, WANG T, et al.. Activation of p62-Keap1-Nrf2 pathway protects 6-hydroxydopamine-induced ferroptosis in dopaminergic cells[J]. Mol. Neurobiol., 2020, 57(11): 4628-4641. | 
| 21 | MAO Y, DU J, CHEN X, et al.. Maltol promotes mitophagy and inhibits oxidative stress via the Nrf2/PINK1/Parkin pathway after spinal cord injury[J/OL]. Oxid. Med. Cell Longev., 2022, 2022: 1337630[2022-09-14]. . | 
| 22 | DIXON S J, LEMBERG K M, LAMPRECHT M R, et al.. Ferroptosis: an iron-dependent form of nonapoptotic cell death[J]. Cell. 2012, 149(5): 1060-1072. | 
| 23 | WEI N, LU T, YANG L, et al.. Lipoxin A4 protects primary spinal cord neurons from Erastin-induced ferroptosis by activating the Akt/Nrf2/HO-1 signaling pathway[J]. FEBS Open Bio., 2021, 11(8): 2118-2126. | 
| 24 | 杜开颜,祁晨旭,曹静钰,等.铁死亡参与脊髓损伤调控的研究进展[J].生物技术进展,2022,12(6):869-874. | 
| 25 | STOCKWELL B R, FRIEDMANN A J P, BAYIR H, et al.. Ferroptosis: a regulated cell death nexus linking metabolism[J]. Redox Biol., 2017, 171(2): 273-285. | 
| 26 | GAO M, MONIAN P, QUADRI N, et al.. Glutaminolysis and transferrin regulate ferroptosis[J]. Mol. Cell, 2015, 59(2): 298-308. | 
| 27 | YANG W S, KIM K J, GASCHLER M M, et al.. Peroxidation of polyunsaturated fatty acids by lipoxygenases drives ferroptosis[J]. Proc. Natl. Acad. Sci. USA, 2016, 113(34): 4966-4975. | 
| 28 | SHIMADA K, SKOUTA R, KAPLAN A, et al.. Global survey of cell death mechanisms reveals metabolic regulation of ferroptosis[J]. Nat. Chem. Biol., 2016, 12(7): 497-503. | 
| 29 | ABRAMS R P, CARROLL W L, WOERPEL K A. Five-membered ring peroxide selectively initiates ferroptosis in cancer cells[J]. ACS Chem. Biol., 2016, 11(5): 1305-1312. | 
| 30 | YAN H F, ZOU T, TUO Q Z, et al.. Ferroptosis: mechanisms and links with diseases[J/OL]. Signal Transduct. Target Ther., 2021, 6(1): 49[2022-09-16]. . | 
| 31 | DOLL S, PRONETH B, TYURINA Y Y, et al.. ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition[J]. Nat. Chem. Biol., 2017, 13(1): 91-98. | 
| 32 | CONRAD M, ANGELI J P, VANDENABEELE P, et al.. Regulated necrosis: disease relevance and therapeutic opportunities[J]. Nat. Rev. Drug Discov., 2016, 15(5): 348-366. | 
| 33 | YANG W S, STOCKWELL B R. Ferroptosis: death by lipid peroxidation[J]. Trends Cell Biol., 2016, 26(3): 165-176. | 
| 34 | YANG W S, STOCKWELL B R. Synthetic lethal screening identifies compounds activating iron-dependent, nonapoptotic cell death in oncogenic-RAS-harboring cancer cells[J]. Chem. Biol., 2008, 15(3): 234-245. | 
| 35 | ANGELI J P F, SHAH R, PRATT D A, et al.. Ferroptosis inhibition: mechanisms and opportunities[J]. Trends Pharmacol. Sci., 2017, 38(5): 489-498. | 
| 36 | ANANDHAN A, DODSON M, SCHMIDLIN C J, et al.. Breakdown of an ironclad defense system: the critical role of NRF2 in mediating ferroptosis[J]. Cell Chem. Biol., 2020, 27(4): 436-447. | 
| 37 | SEIBT T M, PRONETH B, CONRAD M. Role of GPX4 in ferroptosis and its pharmacological implication[J]. Free Radic. Biol. Med., 2019, 133: 144-152. | 
| 38 | ZHAO X, ARONOWSKI J. Nrf2 to pre-condition the brain against injury caused by products of hemolysis after ICH[J]. Transl. Stroke Res., 2013, 4(1): 71-75. | 
| 39 | HAQUE A, DAS A, SAMANTARAY S, et al.. Premarin reduces neurodegeneration and promotes improvement of function in an animal model of spinal cord injury[J/OL]. Int. J. Mol. Sci., 2022, 23(4): 2384[2022-09-16]. . | 
| 40 | KO C J, GAO S L, LIN T K, et al.. Ferroptosis as a major factor and therapeutic target for neuroinflammation in Parkinson's disease[J/OL]. Biomedicines, 2021, 9(11): 1679[2022-09-16]. . | 
| 41 | XIA M, ZHANG Y, WU H, et al.. Forsythoside B attenuates neuro-inflammation and neuronal apoptosis by inhibition of NF-κB and p38-MAPK signaling pathways through activating Nrf2 post spinal cord injury[J/OL]. Int. Immunopharmacol., 2022, 111: 109120[2022-09-16]. . | 
| 42 | EBRAHIMY N, GASTERICH N, BEHRENS V, et al.. Neuroprotective effect of the Nrf2/ARE/miRNA145-5p signaling pathway in the early phase of spinal cord injury[J/OL]. Life Sci., 2022, 304: 120726[2022-9-18]. . | 
| 43 | ZHAO W, GASTERICH N, CLARNER T, et al.. Astrocytic Nrf2 expression protects spinal cord from oxidative stress following spinal cord injury in a male mouse model[J/OL]. J. Neuroinflamm., 2022, 19(1): 134[2022-09-18]. . | 
| 44 | NUNNARI J, SUOMALAINEN A. Mitochondria: in sickness and in health[J]. Cell, 2012, 148(6): 1145-1159. | 
| 45 | HAYES J D, DINKOVA-KOSTOVA A T. The Nrf2 regulatory network provides an interface between redox and intermediary metabolism[J]. Trends Biochem, Sci., 2014, 39(4): 199-218. | 
| 46 | KANG T C. Nuclear factor-erythroid 2-related factor 2 (Nrf2) and mitochondrial dynamics/mitophagy in neurological diseases[J/OL]. Antioxidants(Basel), 2020, 9(7): 617[2022-09-22]. . | 
| 47 | WANG J, ZHANG W, LV C, et al.. A novel biscoumarin compound ameliorates cerebral ischemia reperfusion-induced mitochondrial oxidative injury via Nrf2/Keap1/ARE signaling[J/OL]. Neuropharmacology, 2020, 167: 107918[2022-09-22]. . | 
| 48 | TAKEDA H, YAMAGUCHI T, YANO H, et al.. Microglial metabolic disturbances and neuroinflammation in cerebral infarction[J]. J. Pharmacol. Sci., 2021, 145(1): 130-139. | 
| 49 | VANDEN B T, LINKERMANN A, JOUAN-LANHOUET S, et al.. Regulated necrosis: the expanding network of non-apoptotic cell death pathways[J]. Nat. Rev. Mol. Cell Biol., 2014, 15(2): 135-147. | 
| 50 | HEINE K B, HOOD W R. Mitochondrial behaviour, morphology, and animal performance[J]. Biol. Rev. Camb. Philos. Soc., 2020, 95(3): 730-737. | 
| 51 | GE M H, TIAN H, MAO L, et al.. Zinc attenuates ferroptosis and promotes functional recovery in contusion spinal cord injury by activating Nrf2/GPX4 defense pathway[J]. CNS Neurosci. Ther., 2021, 27(9): 1023-1040. | 
| 52 | CHEN Y, LIU S, LI J, et al.. The latest view on the mechanism of ferroptosis and its research progress in spinal cord injury[J/OL]. Oxid Med. Cell Longev., 2020, 2020: 6375938[2022-12-24]. . | 
| 53 | FENG Z, MIN L, CHEN H, et al.. Iron overload in the motor cortex induces neuronal ferroptosis following spinal cord injury[J/OL]. Redox Biol., 2021, 43: 101984[2022-09-27]. . | 
| 54 | JIA Z, ZHU H, LI J, et al.. Oxidative stress in spinal cord injury and antioxidant-based intervention[J]. Spinal Cord, 2012, 50(4): 264-274. | 
| 55 | MAO L, WANG H D, WANG X L, et al.. Disruption of Nrf2 exacerbated the damage after spinal cord injury in mice[J]. J. Trauma Acute Care Surg., 2012, 72(1): 189-198. | 
| 56 | YAN N, XU Z, QU C, et al.. Dimethyl fumarate improves cognitive deficits in chronic cerebral hypoperfusion rats by alleviating inflammation, oxidative stress, and ferroptosis via NRF2/ARE/NF-κB signal pathway[J/OL]. Int. Immunopharmacol., 2021, 98: 107844[2022-10-10]. . | 
| 57 | 张振.Nrf2/HO-1信号通路在人参皂苷Rg1作用于脊髓损伤中的机制研究[D].湖北十堰:湖北医药学院,2022. | 
| 58 | FENG H, SCHORPP K, JIN J, et al.. Transferrin receptor is a specific ferroptosis marker[J]. Cell Rep., 2020, 30(10): 3411-3423. | 
| 59 | HARADA N, KANAYAMA M, MARUYAMA A, et al.. Nrf2 regulates ferroportin 1-mediated iron efflux and counteracts lipopolysaccharide-induced ferroportin 1 mRNA suppression in macrophages[J]. Arch Biochem. Biophys., 2011, 508(1): 101-109. | 
| 60 | 郭淑慧,杨晔,江杨洋,等.神经源性膀胱miRNA-mRNA调控网络的筛选与验证[J].中国组织工程研究,2023,27(20):3143-3150. | 
| [1] | Chuancai LIANG, Bo QIU. Echinoside Inhibits IL-1β-induced Chondrocytes Iron Death Through Nrf2/HO-1 Pathway [J]. Current Biotechnology, 2025, 15(4): 720-725. | 
| [2] | Tianyuan ZHAO, Jing WANG, Yulu WANG, Chunsen YUAN, Xuechai CHEN. Research Progress on Neuroprotective Effects of Betaine [J]. Current Biotechnology, 2025, 15(2): 220-225. | 
| [3] | Changze LI, Shuai LIU, Tongxiang DIAO, Keqin ZHANG, Dingqi SUN, Hui ZHANG. Fermented Epimedium Improves Sperm Deficiency Model in Mice: Effects and Mechanisms [J]. Current Biotechnology, 2025, 15(1): 170-175. | 
| [4] | Jianhong YANG, Boyan LIU, Jun CHEN, Zhihui QIU, Baoqiang LI, Shucun QIN, Yandong NIU, Lei HE. Effects of Pre-treatment of Nanobubble Hydrogen Water on the Mouse Psoriasis Induction by Imiquimod [J]. Current Biotechnology, 2024, 14(4): 676-684. | 
| [5] | Jianhong YANG, Jun CHEN, Xuefei LI, Lijun LIU, Lili CHEN, Xinsuo DUAN, Shucun QIN, Lei HE. The Potential and Prospect of Molecular Hydrogen in the Treatment of Skin Diseases [J]. Current Biotechnology, 2023, 13(6): 875-881. | 
| [6] | Junkai ZHU, Lingzhi GE, Chao ZHANG, Can CAO, Jiahui WU, Zhen MU. Inhibitory Effect of Hydrogen Molecule on Imiquimod-induced Psoriasis-like Dermatitis in Mice [J]. Current Biotechnology, 2023, 13(6): 945-953. | 
| [7] | Mingjiao ZHANG, Jiefu ZHU, Xiongfei WU. Cell Death in Cisplatin-induced Kidney Injury [J]. Current Biotechnology, 2023, 13(5): 718-724. | 
| [8] | Shiming LI, Peng ZHANG, Pengxiang ZHAO, Fei XIE, Xiaoping CHEN, Mengyu LIU. Research Progress of Oxidative Stress and Disuse Muscular Atrophy [J]. Current Biotechnology, 2023, 13(4): 524-533. | 
| [9] | Zhen WANG, Kerang HUANG, Lei CHEN, Min ZHOU, Yuanxia XUE. Effect of Erastin on the Ultrastructure of Granular Cells by High Pressure Freezing-freezing Substitution Technology [J]. Current Biotechnology, 2023, 13(4): 637-644. | 
| [10] | Li CAO, Shun LUO, Shihai XING, Jinshu QIU, Zhiyong LIN, Jun LIN, Xu MENG, Feng LIU. Effects of Dioscorea opposita Extract on CHO Cell Growth and Monoclonal Antibody Expression [J]. Current Biotechnology, 2023, 13(3): 449-456. | 
| [11] | Yanrong WANG, Yuanbiao GUO. Construction of a Prognostic Signature for Hepatocellular Carcinoma Based on Ferroptosis-related LncRNAs [J]. Current Biotechnology, 2023, 13(3): 473-481. | 
| [12] | Kaiyan DU, Chenxu QI, Jingyu CAO, Meng CHEN, Jing GAO, Chengmei LIU. Research Progress on the Regulatory Mechanism of Ferroptosis in Spinal Cord Injury [J]. Current Biotechnology, 2022, 12(6): 869-874. | 
| [13] | Jun CHEN, Shucun QIN, Lei HE. Inhibiting Effect of Hydrogen-rich Saline on Psoriasis in Imiquimod-induced Mouse Models [J]. Current Biotechnology, 2022, 12(4): 503-509. | 
| [14] | Yichao LIU, Chao LU, Yuhua ZHAN, Xiubin KE, Wei LU, Yongliang YAN. Expressional and Functional Characterization of the Ferric Uptake Regulator Fur in Pseudomonas stutzeri A1501 [J]. Current Biotechnology, 2022, 12(3): 387-395. | 
| [15] | Tong JIN, Cheng CHEN. Research Progress on the Correlation Between Ferroptosis and Kidney Disease [J]. Current Biotechnology, 2022, 12(1): 68-74. | 
| Viewed | ||||||
| Full text |  | |||||
| Abstract |  | |||||