Current Biotechnology ›› 2025, Vol. 15 ›› Issue (1): 78-85.DOI: 10.19586/j.2095-2341.2023.0165
• Articles • Previous Articles Next Articles
Xin QI1(
), Xinran LI1, Yaning GUO2, Dan WANG1, Kai LI1, Qiong WU3, Liang LI1(
)
Received:2023-12-18
Accepted:2024-10-31
Online:2025-01-25
Published:2025-03-07
Contact:
Liang LI
齐鑫1(
), 李欣然1, 郭亚宁2, 王丹1, 李凯1, 吴琼3, 李亮1(
)
通讯作者:
李亮
作者简介:齐鑫 E-mail: qixin_0908@163.com;
基金资助:CLC Number:
Xin QI, Xinran LI, Yaning GUO, Dan WANG, Kai LI, Qiong WU, Liang LI. Comparison of Endogenous Genes in Maize Based on Digital PCR[J]. Current Biotechnology, 2025, 15(1): 78-85.
齐鑫, 李欣然, 郭亚宁, 王丹, 李凯, 吴琼, 李亮. 基于数字PCR方法的玉米内标准基因比较研究[J]. 生物技术进展, 2025, 15(1): 78-85.
| 基因名称 | 引物探针序列(5'→3') | 扩增子/bp | 参考文献 | |
|---|---|---|---|---|
| hmg | F-1 | 5′-TTGGACTAGAAATCTCGTGCTGA-3′ | 79 | [ |
| R-1 | 5′-GCTACATAGGGAGCCTTGTCCT-3′ | |||
| P-1 | 5′-CAATCCACACAAACGCACGCGTA-3′ | |||
| adh1-1 | F-1 | 5′-CGTCGTTTCCCATCTCTTCCTCC-3′ | 135 | [ |
| R-1 | 5′-CCACTCCGAGACCCTCAGTC-3′ | |||
| P-1 | 5′-AATCAGGGCTCATTTTCTCGCTCCTCA-3′ | |||
| adh1-2 | F-2 | 5′-CCTTCTTGGCGGCTTATCTG-3′ | 70 | [ |
| R-2 | 5′-CCAGCCTCATGGCCAAAG-3′ | |||
| P-2 | 5′-CTTAGGGGCAGACTCCCGTGTTCCCT-3′ | |||
| ivr1-1 | F-1 | 5′-CGCTCTGTACAAGCGTGC-3′ | 104 | [ |
| R-1 | 5′-GCAAAGTGTTGTGCTTGGACC-3′ | |||
| P-1 | 5′-CACGTGAGAATTTCCGTCTACTCGAGCCT-3′ | |||
| ivr1-2 | F-2 | 5′-TGGCGGACGACGACTTGT-3′ | 79 | [ |
| R-2 | 5′-AAAGTTTGGAGGCTGCCGT-3′ | |||
| P-2 | 5′-CGAGCAGACCGCCGTGTACTTCTACC-3′ | |||
| zein-1 | F-1 | 5′-CGTGTCCGTCCCTGATGC-3′ | 83 | [ |
| R-1 | 5′-AGGCGTCATCATCTGTGGC-3′ | |||
| P-1 | 5′-CAACTGTTGGCCTTACCGCTTCAGACG-3′ | |||
| zein-2 | F-2 | 5′-GCCATTGGGTACCATGAACC-3′ | 104 | [ |
| R-2 | 5′-AGGCCAACAGTTGCTGCAG-3′ | |||
| P-2 | 5′-AGCTTGATGGCGTGTCCGTCCCT-3′ | |||
| zSSIIb-1 | F-1 | 5′-CTCCCAATCCTTTGACATCTGC-3′ | 151 | [ |
| R-1 | 5′-TCGATTTCTCTCTTGGTGACAGG-3′ | |||
| P-1 | 5′-AGCAAAGTCAGAGCGCTGCAATGCA-3′ | |||
| zSSIIb-2 | F-2 | 5′-CCAATCCTTTGACATCTGCTCC-3′ | 114 | [ |
| R-2 | 5′-GATCAGCTTTGGGTCCGGA-3′ | |||
| P-2 | 5′-AGCAAAGTCAGAGCGCTGCAATGCA-3′ | |||
Table 1 Primer probe sequences of endogenous genes in maize
| 基因名称 | 引物探针序列(5'→3') | 扩增子/bp | 参考文献 | |
|---|---|---|---|---|
| hmg | F-1 | 5′-TTGGACTAGAAATCTCGTGCTGA-3′ | 79 | [ |
| R-1 | 5′-GCTACATAGGGAGCCTTGTCCT-3′ | |||
| P-1 | 5′-CAATCCACACAAACGCACGCGTA-3′ | |||
| adh1-1 | F-1 | 5′-CGTCGTTTCCCATCTCTTCCTCC-3′ | 135 | [ |
| R-1 | 5′-CCACTCCGAGACCCTCAGTC-3′ | |||
| P-1 | 5′-AATCAGGGCTCATTTTCTCGCTCCTCA-3′ | |||
| adh1-2 | F-2 | 5′-CCTTCTTGGCGGCTTATCTG-3′ | 70 | [ |
| R-2 | 5′-CCAGCCTCATGGCCAAAG-3′ | |||
| P-2 | 5′-CTTAGGGGCAGACTCCCGTGTTCCCT-3′ | |||
| ivr1-1 | F-1 | 5′-CGCTCTGTACAAGCGTGC-3′ | 104 | [ |
| R-1 | 5′-GCAAAGTGTTGTGCTTGGACC-3′ | |||
| P-1 | 5′-CACGTGAGAATTTCCGTCTACTCGAGCCT-3′ | |||
| ivr1-2 | F-2 | 5′-TGGCGGACGACGACTTGT-3′ | 79 | [ |
| R-2 | 5′-AAAGTTTGGAGGCTGCCGT-3′ | |||
| P-2 | 5′-CGAGCAGACCGCCGTGTACTTCTACC-3′ | |||
| zein-1 | F-1 | 5′-CGTGTCCGTCCCTGATGC-3′ | 83 | [ |
| R-1 | 5′-AGGCGTCATCATCTGTGGC-3′ | |||
| P-1 | 5′-CAACTGTTGGCCTTACCGCTTCAGACG-3′ | |||
| zein-2 | F-2 | 5′-GCCATTGGGTACCATGAACC-3′ | 104 | [ |
| R-2 | 5′-AGGCCAACAGTTGCTGCAG-3′ | |||
| P-2 | 5′-AGCTTGATGGCGTGTCCGTCCCT-3′ | |||
| zSSIIb-1 | F-1 | 5′-CTCCCAATCCTTTGACATCTGC-3′ | 151 | [ |
| R-1 | 5′-TCGATTTCTCTCTTGGTGACAGG-3′ | |||
| P-1 | 5′-AGCAAAGTCAGAGCGCTGCAATGCA-3′ | |||
| zSSIIb-2 | F-2 | 5′-CCAATCCTTTGACATCTGCTCC-3′ | 114 | [ |
| R-2 | 5′-GATCAGCTTTGGGTCCGGA-3′ | |||
| P-2 | 5′-AGCAAAGTCAGAGCGCTGCAATGCA-3′ | |||
| 基因名称 | 59.0 ℃ | 58.6 ℃ | 58.0 ℃ | 57.1 ℃ | 55.9 ℃ | 55.0 ℃ | 平均值±标准差 | RSD/% |
|---|---|---|---|---|---|---|---|---|
| hmg | 3 550.0 | 3 643.3 | 3 690.0 | 3 653.3 | 3 660.0 | 3 736.7 | 3 655.6±61.78 | 1.69 |
| adh1-1 | 2 630.0 | 2 663.3 | 2 676.7 | 2 676.7 | 2 640.0 | 2 673.3 | 2 660.0±20.22 | 0.76 |
| adh1-2 | 3 190.0 | 3 230.0 | 3 216.7 | 3 260.0 | 3 236.7 | 3 200.0 | 3 222.2±25.53 | 0.79 |
| ivr1-1 | 2 733.3 | 2 753.3 | 2 806.7 | 2 763.3 | 2 813.3 | 2 793.3 | 2 777.2±32.00 | 1.15 |
| ivr1-2 | 3 600.0 | 3 596.7 | 3 790.0 | 3 790.0 | 3 700.0 | 3 716.7 | 3 698.9±86.20 | 2.33 |
| zein-1 | 2 613.3 | 2 666.7 | 2 763.3 | 3 030.0 | 3 583.3 | 4 083.3 | 3 123.3±589.94 | 18.89 |
| zein-2 | 2 823.3 | 2 833.3 | 2 923.3 | 2 900.0 | 2 926.7 | 2 900.0 | 2 884.4±45.00 | 1.56 |
| zSSIIb-1 | 3 443.3 | 3 416.7 | 3 493.3 | 3 496.7 | 3 476.7 | 3 510.0 | 3 472.8±35.80 | 1.03 |
| zSSIIb-2 | 4 070.0 | 4 123.3 | 4 136.7 | 4 186.7 | 4 180.0 | 4 040.0 | 4 122.8±58.63 | 1.42 |
Table 2 Copy number of nine endogenous genes at different annealing temperatures
| 基因名称 | 59.0 ℃ | 58.6 ℃ | 58.0 ℃ | 57.1 ℃ | 55.9 ℃ | 55.0 ℃ | 平均值±标准差 | RSD/% |
|---|---|---|---|---|---|---|---|---|
| hmg | 3 550.0 | 3 643.3 | 3 690.0 | 3 653.3 | 3 660.0 | 3 736.7 | 3 655.6±61.78 | 1.69 |
| adh1-1 | 2 630.0 | 2 663.3 | 2 676.7 | 2 676.7 | 2 640.0 | 2 673.3 | 2 660.0±20.22 | 0.76 |
| adh1-2 | 3 190.0 | 3 230.0 | 3 216.7 | 3 260.0 | 3 236.7 | 3 200.0 | 3 222.2±25.53 | 0.79 |
| ivr1-1 | 2 733.3 | 2 753.3 | 2 806.7 | 2 763.3 | 2 813.3 | 2 793.3 | 2 777.2±32.00 | 1.15 |
| ivr1-2 | 3 600.0 | 3 596.7 | 3 790.0 | 3 790.0 | 3 700.0 | 3 716.7 | 3 698.9±86.20 | 2.33 |
| zein-1 | 2 613.3 | 2 666.7 | 2 763.3 | 3 030.0 | 3 583.3 | 4 083.3 | 3 123.3±589.94 | 18.89 |
| zein-2 | 2 823.3 | 2 833.3 | 2 923.3 | 2 900.0 | 2 926.7 | 2 900.0 | 2 884.4±45.00 | 1.56 |
| zSSIIb-1 | 3 443.3 | 3 416.7 | 3 493.3 | 3 496.7 | 3 476.7 | 3 510.0 | 3 472.8±35.80 | 1.03 |
| zSSIIb-2 | 4 070.0 | 4 123.3 | 4 136.7 | 4 186.7 | 4 180.0 | 4 040.0 | 4 122.8±58.63 | 1.42 |
| MON810稀释倍数 | 拷贝数·µL-1 | 均值 | RSD/% | |||
|---|---|---|---|---|---|---|
| 重复1 | 重复2 | 重复3 | 重复4 | |||
| 50 000 | 5 470 | 5 680 | 5 620 | 5 840 | 5 652.5 | 2.71 |
| 70 000 | 3 680 | 3 760 | 3 600 | 3 880 | 3 730.0 | 3.20 |
| 90 000 | 3 350 | 3 380 | 3 210 | 3 360 | 3 325.0 | 2.34 |
Table 3 Copy number of actual samples MON810
| MON810稀释倍数 | 拷贝数·µL-1 | 均值 | RSD/% | |||
|---|---|---|---|---|---|---|
| 重复1 | 重复2 | 重复3 | 重复4 | |||
| 50 000 | 5 470 | 5 680 | 5 620 | 5 840 | 5 652.5 | 2.71 |
| 70 000 | 3 680 | 3 760 | 3 600 | 3 880 | 3 730.0 | 3.20 |
| 90 000 | 3 350 | 3 380 | 3 210 | 3 360 | 3 325.0 | 2.34 |
| 靶标 | 拷贝数·µL-1 | 均值 | RSD/% | |||
|---|---|---|---|---|---|---|
| 重复1 | 重复2 | 重复3 | 重复4 | |||
| hmg | 3 540 | 3 860 | 3 910 | 3 610 | 3 730.0 | 4.89 |
| adh1-1 | 3 340 | 3 410 | 3 340 | 3 430 | 3 380.0 | 1.39 |
| adh1-2 | 3 920 | 4 030 | 4 000 | 3 970 | 3 980.0 | 1.18 |
| ivr1-1 | 3 260 | 3 400 | 3 440 | 3 420 | 3 380.0 | 2.42 |
| ivr1-2 | No Call | No Call | No Call | No Call | - | - |
| zSSIIb-1 | 3 060 | 3 160 | 3 180 | 3 280 | 3 170.0 | 2.84 |
| zSSIIb-2 | 3 380 | 3 400 | 3 450 | 3 380 | 3 402.5 | 0.97 |
| zein-1 | 4 100 | 4 120 | 4 130 | 4 110 | 4 115.0 | 0.31 |
| zein-2 | 4 120 | 4 130 | 4 120 | 4 040 | 4 102.5 | 1.02 |
Table 4 ddPCR results of nine endogenous genes in mixed DNA solution
| 靶标 | 拷贝数·µL-1 | 均值 | RSD/% | |||
|---|---|---|---|---|---|---|
| 重复1 | 重复2 | 重复3 | 重复4 | |||
| hmg | 3 540 | 3 860 | 3 910 | 3 610 | 3 730.0 | 4.89 |
| adh1-1 | 3 340 | 3 410 | 3 340 | 3 430 | 3 380.0 | 1.39 |
| adh1-2 | 3 920 | 4 030 | 4 000 | 3 970 | 3 980.0 | 1.18 |
| ivr1-1 | 3 260 | 3 400 | 3 440 | 3 420 | 3 380.0 | 2.42 |
| ivr1-2 | No Call | No Call | No Call | No Call | - | - |
| zSSIIb-1 | 3 060 | 3 160 | 3 180 | 3 280 | 3 170.0 | 2.84 |
| zSSIIb-2 | 3 380 | 3 400 | 3 450 | 3 380 | 3 402.5 | 0.97 |
| zein-1 | 4 100 | 4 120 | 4 130 | 4 110 | 4 115.0 | 0.31 |
| zein-2 | 4 120 | 4 130 | 4 120 | 4 040 | 4 102.5 | 1.02 |
| 靶标 | 拷贝数·µL-1 | 均值 | 标准差 | RSD/% | |||
|---|---|---|---|---|---|---|---|
| 重复1 | 重复2 | 重复3 | 重复4 | ||||
| MON810-5 | 547 | 568 | 562 | 584 | 565.25 | 15.31 | 0.03 |
| adh1-1 | 334 | 341 | 334 | 343 | 338.00 | 4.69 | 0.01 |
| 外源/内标 | 164% | 167% | 168% | 170% | 167% | 0.03 | 0.02 |
| MON810-7 | 368 | 376 | 360 | 388 | 373.00 | 11.94 | 0.03 |
| adh1-1 | 334 | 341 | 334 | 343 | 338.00 | 4.69 | 0.01 |
| 外源/内标 | 110% | 110% | 108% | 113% | 110% | 0.02 | 0.02 |
| MON810-9 | 335 | 338 | 321 | 336 | 332.50 | 7.77 | 0.02 |
| adh1-1 | 334 | 341 | 334 | 343 | 338.00 | 4.69 | 0.01 |
| 外源/内标 | 100% | 99% | 96% | 98% | 98% | 0.02 | 0.02 |
Table 5 Comparison result of copy number between MON810 and adh1-1
| 靶标 | 拷贝数·µL-1 | 均值 | 标准差 | RSD/% | |||
|---|---|---|---|---|---|---|---|
| 重复1 | 重复2 | 重复3 | 重复4 | ||||
| MON810-5 | 547 | 568 | 562 | 584 | 565.25 | 15.31 | 0.03 |
| adh1-1 | 334 | 341 | 334 | 343 | 338.00 | 4.69 | 0.01 |
| 外源/内标 | 164% | 167% | 168% | 170% | 167% | 0.03 | 0.02 |
| MON810-7 | 368 | 376 | 360 | 388 | 373.00 | 11.94 | 0.03 |
| adh1-1 | 334 | 341 | 334 | 343 | 338.00 | 4.69 | 0.01 |
| 外源/内标 | 110% | 110% | 108% | 113% | 110% | 0.02 | 0.02 |
| MON810-9 | 335 | 338 | 321 | 336 | 332.50 | 7.77 | 0.02 |
| adh1-1 | 334 | 341 | 334 | 343 | 338.00 | 4.69 | 0.01 |
| 外源/内标 | 100% | 99% | 96% | 98% | 98% | 0.02 | 0.02 |
| 靶标 | 拷贝·µL-1 | 均值 | 标准差 | RSD/% | |||
|---|---|---|---|---|---|---|---|
| 重复1 | 重复2 | 重复3 | 重复4 | ||||
| MON810-5 | 547 | 568 | 562 | 584 | 565.25 | 15.31 | 0.03 |
| adh1-2 | 392 | 403 | 400 | 397 | 398.00 | 4.69 | 0.01 |
| 外源/内标 | 140% | 141% | 141% | 147% | 142% | 0.03 | 0.02 |
| MON810-7 | 368 | 376 | 360 | 388 | 373.00 | 11.94 | 0.03 |
| adh1-2 | 392 | 403 | 400 | 397 | 398.00 | 4.69 | 0.01 |
| 外源/内标 | 94% | 93% | 90% | 98% | 94% | 0.03 | 0.03 |
| MON810-9 | 335 | 338 | 321 | 336 | 332.50 | 7.77 | 0.02 |
| adh1-2 | 392 | 403 | 400 | 397 | 398.00 | 4.69 | 0.01 |
| 外源/内标 | 85% | 84% | 80% | 85% | 84% | 0.02 | 0.03 |
Table 6 Comparison result of copy number between MON810 and adh1-2
| 靶标 | 拷贝·µL-1 | 均值 | 标准差 | RSD/% | |||
|---|---|---|---|---|---|---|---|
| 重复1 | 重复2 | 重复3 | 重复4 | ||||
| MON810-5 | 547 | 568 | 562 | 584 | 565.25 | 15.31 | 0.03 |
| adh1-2 | 392 | 403 | 400 | 397 | 398.00 | 4.69 | 0.01 |
| 外源/内标 | 140% | 141% | 141% | 147% | 142% | 0.03 | 0.02 |
| MON810-7 | 368 | 376 | 360 | 388 | 373.00 | 11.94 | 0.03 |
| adh1-2 | 392 | 403 | 400 | 397 | 398.00 | 4.69 | 0.01 |
| 外源/内标 | 94% | 93% | 90% | 98% | 94% | 0.03 | 0.03 |
| MON810-9 | 335 | 338 | 321 | 336 | 332.50 | 7.77 | 0.02 |
| adh1-2 | 392 | 403 | 400 | 397 | 398.00 | 4.69 | 0.01 |
| 外源/内标 | 85% | 84% | 80% | 85% | 84% | 0.02 | 0.03 |
| 1 | 王凤军,陈强,叶素丹,等.转基因玉米品系及转化体成分四重实时荧光PCR快速鉴定[J].中国粮油学报,2021,36(12):128-135. |
| WANG F J, CHEN Q, YE S D, et al.. Rapid identification of transgenic maize lines and transformants by quadruplex real-time PCR[J]. J. Chin. Cereals Oils Assoc., 2021, 36(12): 128-135. | |
| 2 | TAKABATAKE R, ONISHI M, FUTO S, et al.. Comparison of the specificity,stability,and PCR efficiency of six rice endogenous sequences for detection analyses of genetically modified rice[J]. Food Contr., 2015, 50: 949-955. |
| 3 | 陈利红,周俊飞,梁晋刚,等.基于二代测序技术的玉米内标准基因扩增子的筛选与评估[J].食品科学,2023,44(20):146-154. |
| CHEN L H, ZHOU J F, LIANG J G, et al.. Screening and evaluation of amplicons of maize endogenous reference genes based on next-generation sequencing technology[J]. Food Sci., 2023, 44(20): 146-154. | |
| 4 | 高佳奇,陈硕,王迪 等.六种作物内标准基因开发与检测研究进展[J]. 生物技术进展, 2020, 10(6): 613-622. |
| GAO J Q, CHEN S, WANG D, et al.. Progress on development and detection of internal reference genes in six crops[J]. Curr. Biotechnol., 2020, 10(6): 613-622. | |
| 5 | COTTENET G, BLANCPAIN C, CHUAH P F. Performance assessment of digital PCR for the quantification of GM-maize and GM-soya events[J]. Anal. Bioanal. Chem., 2019, 411(11): 2461-2469. |
| 6 | DENG T T, HUANG W S, REN J N, et al.. Verification and applicability of endogenous reference genes for quantifying GM rice by digital PCR[J/OL]. Anal. Biochem., 2019, 587: 113442[2024-12-30]. . |
| 7 | PATERNÒ A, MARCHESI U, GATTO F, et al.. Finding the joker among the maize endogenous reference genes for genetically modified organism (GMO) detection[J]. J. Agric. Food Chem., 2009, 57(23): 11086-11091. |
| 8 | 王凤军,杨伊平,叶素丹,等.多重荧光定量PCR快速鉴定转基因玉米品系[J].中国粮油学报,2023,38(4):143-149. |
| WANG F J, YANG Y P, YE S D, et al.. Rapid identification of transgenic maize lines by multiplex fluorescence quantitative PCR[J]. J. Chin. Cereals Oils Assoc., 2023, 38(4): 143-149. | |
| 9 | 李凌燕,张旭冬,陈子言,等.转基因抗虫耐除草剂玉米MON87411精准定量检测方法的建立[J].生物安全学报,2023,32(1):38-45. |
| LI L Y, ZHANG X D, CHEN Z Y, et al.. Establishment of accurate quantitative detection method for insect-resistant and herbicide-tolerant maize MON87411[J]. J. Biosaf., 2023, 32(1): 38-45. | |
| 10 | 周圆,单长林,李孝军,等.运用微滴式数字PCR技术检测转基因玉米品系的研究[J].安徽农业科学,2018,46(14):175-178. |
| ZHOU Y, SHAN C L, LI X J, et al.. Study on detection of genetically modified maize lines using microdrop digital PCR technique[J]. J. Anhui Agric. Sci., 2018, 46(14): 175-178. | |
| 11 | FOLLONI S, BELLOCCHI G, PROSPERO A, et al.. Statistical evaluation of real-time PCR protocols applied to quantify genetically modified maize[J]. Food Anal. Meth., 2010, 3(4): 304-312. |
| 12 | WEI S, WANG C G, ZHU P Y, et al.. A high-throughput multiplex tandem PCR assay for the screening of genetically modified maize[J]. LWT, 2018, 87: 169-176. |
| 13 | PAPAZOVA N, ZHANG D, GRUDEN K, et al.. Evaluation of the reliability of maize reference assays for GMO quantification[J]. Anal. Bioanal. Chem., 2010, 396(6): 2189-2201. |
| 14 | 肖芳,李俊,王颢潜 等.转基因玉米NK603转化体/zSSIIb内标基因二重微滴数字PCR方法的建立及应用[J]. 中国农业科学, 2021, 54(22): 4728-4739. |
| XIAO F, LI J, WANG H Q, et al.. Establishment and application of A duplex ddPCR method to quantify the NK603/zSSIIb copy number ratio in transgenic maize NK603[J]. Sci. Agric. Sin., 2021, 54(22): 4728-4739. | |
| 15 | SCHOLDBERG T A, NORDEN T D, NELSON D D, et al.. Evaluating precision and accuracy when quantifying different endogenous control reference genes in maize using real-time PCR[J]. J. Agric. Food Chem., 2009, 57(7): 2903-2911. |
| 16 | DMIQE G, HUGGETT J F.The digital MIQE guidelines update:minimum information for publication of quantitative digital PCR experiments for 2020[J]. Clin. Chem., 2020, 66(8): 1012-1029. |
| 17 | BASU A S. Digital assays part I: partitioning statistics and digital PCR[J]. SLAS Technol., 2017, 22(4): 369-386. |
| 18 | CORBISIER P, BUTTINGER G, SAVINI C, et al.. Expression of GM content in mass fraction from digital PCR data[J/OL]. Food Contr., 2022, 133(Pt B): 108626[2024-12-30]. . |
| 19 | ROWLANDS V, RUTKOWSKI A J, MEUSER E, et al.. Optimisation of robust singleplex and multiplex droplet digital PCR assays for high confidence mutation detection in circulating tumour DNA[J/OL]. Sci. Rep., 2019, 9: 12620[2024-12-30]. . |
| 20 | ZHANG H, LAŠŠÁKOVÁ S, YAN Z, et al.. Digital polymerase chain reaction duplexing method in a single fluorescence channel[J/OL]. Anal. Chim. Acta., 2023, 1238: 340243[2024-12-30]. . |
| 21 | DEBSKI P R, GARSTECKI P. Designing and interpretation of digital assays: concentration of target in the sample and in the source of sample[J]. Biomol. Detect. Quantif., 2016, 10: 24-30. |
| 22 | 国家质量监督检验检疫总局,中国国家标准化管理委员会. 水溶液中核酸的浓度和纯度检测 紫外分光光度法: [S].北京:中国标准出版社,2017. |
| 23 | 刘晓,朱鹏宇,景小艳,等.双重数字PCR在转基因大豆检测中的应用[J].生物技术进展,2020,10(1):60-66. |
| LIU X, ZHU P Y, JING X Y, et al.. Application of duplex droplet digital PCR for detection of genetically modified soybean[J]. Curr. Biotechnol., 2020, 10(1): 60-66. | |
| 24 | 卢海强,焦新雅,吴思源,等.数字PCR在食源性致病菌检测中的应用进展[J]. 生物技术进展, 2021, 11(3): 260-268. |
| LU H Q, JIAO X Y, WU S Y, et al.. Application progress on the digital PCR in detection of foodborne pathogenic bacteria[J]. Curr. Biotechnol., 2021, 11(3): 260-268. |
| [1] | Yanyan JIA, Luyang DUANMU. Study on the Mechanism of Bubble Generation and Inhibition Method During Digital PCR Amplification Process [J]. Current Biotechnology, 2025, 15(4): 693-701. |
| [2] | Hongbo FAN, Liangyong HU, Songqing HU. Establishment of Digital PCR Detection System for Helicobacter pyloriureC and 23S rDNA [J]. Current Biotechnology, 2024, 14(5): 868-874. |
| [3] | Yi JI, Kaili WANG, Huiru YU, Xin ZHAO, Lin DING, Cheng PENG, Junfeng XU, Xiaoyun CHEN. Development of Sheep-derived Genomic DNA Reference Material [J]. Current Biotechnology, 2024, 14(1): 125-132. |
| [4] | Peixuan MEN, Yufeng XIAO, Bin ZHANG. Analysis of Clinical Application and Technology Hotspots of Digital PCR Technology Based on Bibliometrics Methods [J]. Current Biotechnology, 2022, 12(4): 606-613. |
| [5] | Xing DANG, Binwei ZHI, Kehao CAO, Tingting LIU, Biao CHEN, Yuanjie DING. Patent Analysis on Genetically Modified Maize Biological Breeding Technology and Development Suggestions [J]. Current Biotechnology, 2022, 12(4): 614-622. |
| [6] | Hongtao WEN, Yang YANG, Yijia DING, Ran YUAN, Ruiying ZHANG, Zhiyuan XU, Jingang LIANG. Establishment of Qualitative PCR Detection of Transgenic Insect⁃resistant Maize CM8101 [J]. Current Biotechnology, 2022, 12(2): 248-255. |
| [7] | LU Haiqiang1, JIAO Xinya1,2, WU Siyuan2, WANG Yali2, LIU Lu2, CHENG Shumei1, ZHANG Xiao3*, SU Xiaofeng2*. Application Progress on the Digital PCR in Detection of Foodborne Pathogenic Bacteria [J]. Curr. Biotech., 2021, 11(3): 260-268. |
| [8] | WANG Di, WU Xiao, WANG Zhidong, GAO Yunhua*. Research Progress on the Flow Cytometry Counting for Single Nucleotide Molecule [J]. Curr. Biotech., 2020, 10(6): 573-578. |
| [9] | ZHENG Zifan, LIU Fangfang, LIU Weixiao, JIN Wujun, LI Liang*. Application of Digital PCR Technology in the Development of Nucleic Acid Reference Materials [J]. Curr. Biotech., 2020, 10(6): 579-584. |
| [10] | WANG Shangjun1, DONG Lianhua2. Research on Calibration Method of Digital PCR Instrument [J]. Curr. Biotech., 2020, 10(6): 585-589. |
| [11] | HU Sihong, YOU Guoye. Application Prospects of Digital PCR in Detection of SARS-CoV-2 [J]. Curr. Biotech., 2020, 10(6): 674-679. |
| [12] | REN Wen1, YANG Haixia2, CHEN Lizhu2, LI Yufeng2, LIU Ya1*. Establishment and Application of Nucleic Acid Chromatography for Rapid Detection of Transgenic Plants [J]. Curr. Biotech., 2020, 10(6): 680-687. |
| [13] | WEN Hongtao1§,YANG Yang1§,DING Yijia1,YUAN Ran1,ZHANG Xiujie2,ZHANG Ruiying1*. Qualitative PCR Methods for the Detection of Transgenic Herbicide-tolerant Maize G1105E-823C [J]. Curr. Biotech., 2020, 10(6): 688-695. |
| [14] | JI Yi, CHEN Xiaoyun, DING Lin, WANG Xiaofu, PENG Cheng, XU Xiaoli, XU Junfeng*. Progress on Identification Methods of Animal-derived Ingredients in Meat and Meat Products [J]. Curr. Biotech., 2020, 10(6): 711-716. |
| [15] | WU Wenyan§, LIU Xinxiang§, ZHOU Miaoyi*, LIU Jinxiang, LIU Ya. Establishment of Event-specific PCR Detection Method of Transgenic Maize Line 2A-5 [J]. Curr. Biotech., 2020, 10(4): 363-370. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||