Current Biotechnology ›› 2024, Vol. 14 ›› Issue (1): 125-132.DOI: 10.19586/j.2095-2341.2023.0137
• Articles • Previous Articles Next Articles
Yi JI1(
), Kaili WANG2, Huiru YU3, Xin ZHAO4, Lin DING1, Cheng PENG1, Junfeng XU1, Xiaoyun CHEN1(
)
Received:2023-10-25
Accepted:2023-11-25
Online:2024-01-25
Published:2024-02-05
Contact:
Xiaoyun CHEN
纪艺1(
), 王凯莉2, 余卉茹3, 赵新4, 丁霖1, 彭城1, 徐俊锋1, 陈笑芸1(
)
通讯作者:
陈笑芸
作者简介:纪艺E-mail: jymemory12138@163.com;
基金资助:CLC Number:
Yi JI, Kaili WANG, Huiru YU, Xin ZHAO, Lin DING, Cheng PENG, Junfeng XU, Xiaoyun CHEN. Development of Sheep-derived Genomic DNA Reference Material[J]. Current Biotechnology, 2024, 14(1): 125-132.
纪艺, 王凯莉, 余卉茹, 赵新, 丁霖, 彭城, 徐俊锋, 陈笑芸. 羊源性基因组DNA标准物质研制[J]. 生物技术进展, 2024, 14(1): 125-132.
| 标准物质 | 组间自由度 | 组内自由度 | 组间均方 | 组内均方 | 统计量(F) | F0.05(5,12) |
|---|---|---|---|---|---|---|
| HELZ(高浓度) | 5 | 12 | 1.48×104 | 9.90×103 | 1.49 | 3.11 |
| HELZ(低浓度) | 5 | 12 | 1.41×102 | 1.29×102 | 1.09 | 3.11 |
Table 1 Results of statistical analysis of the uniformity
| 标准物质 | 组间自由度 | 组内自由度 | 组间均方 | 组内均方 | 统计量(F) | F0.05(5,12) |
|---|---|---|---|---|---|---|
| HELZ(高浓度) | 5 | 12 | 1.48×104 | 9.90×103 | 1.49 | 3.11 |
| HELZ(低浓度) | 5 | 12 | 1.41×102 | 1.29×102 | 1.09 | 3.11 |
| 标准物质 | 组间自由度 | 组内自由度 | 组间均方 | 组内均方 | F0.05(11,24) | ||
|---|---|---|---|---|---|---|---|
| HELZ(高浓度) | 11 | 24 | 1.05×104 | 1.03×102 | 54.23 | 1.1% | 2.215 |
| HELZ(低浓度) | 11 | 24 | 2.96×102 | 2.06×101 | 7.96 | 1.5% | 2.215 |
Table 2 Uniformity statistical analysis results
| 标准物质 | 组间自由度 | 组内自由度 | 组间均方 | 组内均方 | F0.05(11,24) | ||
|---|---|---|---|---|---|---|---|
| HELZ(高浓度) | 11 | 24 | 1.05×104 | 1.03×102 | 54.23 | 1.1% | 2.215 |
| HELZ(低浓度) | 11 | 24 | 2.96×102 | 2.06×101 | 7.96 | 1.5% | 2.215 |
| 标准物质 | HELZ(高浓度) | HELZ(低浓度) | ||
|---|---|---|---|---|
| 4 ℃ | 25 ℃ | 4 ℃ | 25 ℃ | |
| 总均值 | 5.28×103 | 5.25×103 | 5.68×102 | 5.66×102 |
| β1 | 3.70 | -4.82 | -0.48 | -0.27 |
| 截距β0 | 5 258.37 | 5 281.60 | 571.26 | 567.36 |
| 标准偏差S(β1) | 4.42 | 4.48 | 0.76 | 0.81 |
| t0.95,2 | 4.3 | 4.3 | 4.3 | 4.3 |
| t0.95,2×S(β1) | 19.006 | 19.264 | 3.268 | 3.483 |
| 稳定性判断 | │β1│<t0.95,3×S(β1) | |||
| 判断结果 | 稳定 | 稳定 | 稳定 | 稳定 |
Table 3 Short-term stability assessment results
| 标准物质 | HELZ(高浓度) | HELZ(低浓度) | ||
|---|---|---|---|---|
| 4 ℃ | 25 ℃ | 4 ℃ | 25 ℃ | |
| 总均值 | 5.28×103 | 5.25×103 | 5.68×102 | 5.66×102 |
| β1 | 3.70 | -4.82 | -0.48 | -0.27 |
| 截距β0 | 5 258.37 | 5 281.60 | 571.26 | 567.36 |
| 标准偏差S(β1) | 4.42 | 4.48 | 0.76 | 0.81 |
| t0.95,2 | 4.3 | 4.3 | 4.3 | 4.3 |
| t0.95,2×S(β1) | 19.006 | 19.264 | 3.268 | 3.483 |
| 稳定性判断 | │β1│<t0.95,3×S(β1) | |||
| 判断结果 | 稳定 | 稳定 | 稳定 | 稳定 |
| 标准物质 | HELZ(高浓度) | HELZ(低浓度) |
|---|---|---|
| 均值 | 5.21×103 | 5.43×102 |
| β1 | 7.92 | 0.32 |
| 截距β0 | 5 192.56 | 562.72 |
| 标准偏差S(β1) | 15.07 | 1.61 |
| t0.95,3 | 3.18 | 3.18 |
| t0.95,3×S(β1) | 47.90 | 5.12 |
| 稳定性判断 | │β1│<t0.95,3×S(β1) | |
| 判断结果 | 稳定 | 稳定 |
Table 4 Evaluation results of long-term stability at -20 ℃
| 标准物质 | HELZ(高浓度) | HELZ(低浓度) |
|---|---|---|
| 均值 | 5.21×103 | 5.43×102 |
| β1 | 7.92 | 0.32 |
| 截距β0 | 5 192.56 | 562.72 |
| 标准偏差S(β1) | 15.07 | 1.61 |
| t0.95,3 | 3.18 | 3.18 |
| t0.95,3×S(β1) | 47.90 | 5.12 |
| 稳定性判断 | │β1│<t0.95,3×S(β1) | |
| 判断结果 | 稳定 | 稳定 |
| 标准物质 | HELZ(高浓度) | HELZ(低浓度) |
|---|---|---|
| 均值 | 5.24×103 | 5.69×102 |
| β1 | 9.37 | -0.40 |
| 截距β0 | 5 183.78 | 570.80 |
| 标准偏差S(β1) | 5.06 | 0.93 |
| t0.95,8 | 2.31 | 2.31 |
| tβ1 | 1.85 | 0.43 |
| 稳定性判断 | tβ1<t0.95,8 | |
| 判断结果 | 稳定 | 稳定 |
Table 5 Evaluation results of freeze-thaw stability
| 标准物质 | HELZ(高浓度) | HELZ(低浓度) |
|---|---|---|
| 均值 | 5.24×103 | 5.69×102 |
| β1 | 9.37 | -0.40 |
| 截距β0 | 5 183.78 | 570.80 |
| 标准偏差S(β1) | 5.06 | 0.93 |
| t0.95,8 | 2.31 | 2.31 |
| tβ1 | 1.85 | 0.43 |
| 稳定性判断 | tβ1<t0.95,8 | |
| 判断结果 | 稳定 | 稳定 |
| 实验室编号 | Copies·μL-1 | |
|---|---|---|
| HELZ(高浓度) | HELZ(低浓度) | |
| 1 | 5.18×103 | 5.40×102 |
| 2 | 5.59×103 | 5.83×102 |
| 3 | 5.71×103 | 5.87×102 |
| 4 | 5.45×103 | 5.55×102 |
| 5 | 5.52×103 | 5.78×102 |
| 6 | 5.33×103 | 5.69×102 |
| 7 | 5.41×103 | 5.56×102 |
| 8 | 5.35×103 | 5.74×102 |
| 9 | 5.41×103 | 5.68×102 |
| 总平均值 | 5.44×103 | 5.68×102 |
| SD | 1.55×102 | 1.51×101 |
| RSD/% | 2.85 | 2.66 |
Table 6 Analysis of joint setting data from 9 laboratories
| 实验室编号 | Copies·μL-1 | |
|---|---|---|
| HELZ(高浓度) | HELZ(低浓度) | |
| 1 | 5.18×103 | 5.40×102 |
| 2 | 5.59×103 | 5.83×102 |
| 3 | 5.71×103 | 5.87×102 |
| 4 | 5.45×103 | 5.55×102 |
| 5 | 5.52×103 | 5.78×102 |
| 6 | 5.33×103 | 5.69×102 |
| 7 | 5.41×103 | 5.56×102 |
| 8 | 5.35×103 | 5.74×102 |
| 9 | 5.41×103 | 5.68×102 |
| 总平均值 | 5.44×103 | 5.68×102 |
| SD | 1.55×102 | 1.51×101 |
| RSD/% | 2.85 | 2.66 |
| 标准物质 | 标准值Y | 定值相对不确定度 | 均匀性相对不确定度 | 短期稳定性相对不确定度 | 长期稳定性相对不确定度 | 相对标准不确定度 | 相对扩展不确定度 | 扩展不确定度UCRM (k=2)/(copies·μL-1) |
|---|---|---|---|---|---|---|---|---|
| HELZ(高浓度) | 5.44×103 | 0.033 | 0.011 | 0.012 | 0.018 | 0.041 | 0.082 | 0.45×103 |
| HELZ(低浓度) | 5.68×102 | 0.035 | 0.015 | 0.020 | 0.018 | 0.047 | 0.094 | 0.54×102 |
Table 7 Uncertainty evaluation results
| 标准物质 | 标准值Y | 定值相对不确定度 | 均匀性相对不确定度 | 短期稳定性相对不确定度 | 长期稳定性相对不确定度 | 相对标准不确定度 | 相对扩展不确定度 | 扩展不确定度UCRM (k=2)/(copies·μL-1) |
|---|---|---|---|---|---|---|---|---|
| HELZ(高浓度) | 5.44×103 | 0.033 | 0.011 | 0.012 | 0.018 | 0.041 | 0.082 | 0.45×103 |
| HELZ(低浓度) | 5.68×102 | 0.035 | 0.015 | 0.020 | 0.018 | 0.047 | 0.094 | 0.54×102 |
| 1 | SALTER A M. The effects of meat consumption on global health[J]. Rev. Sci. Tech., 2018, 37(1): 47-55. |
| 2 | KÖPPEL R, DANIELS M, FELDERER N, et al.. Multiplex real-time PCR for the detection and quantification of DNA from duck, goose, chicken, turkey and pork[J]. Eur. Food Res. Technol., 2013, 236(6): 1093-1098. |
| 3 | 石盼盼,李旭,魏法山,等.肉类掺假的分子生物学检测[J].食品与生物技术学报,2017,36(7):773-777. |
| SHI P P, LI X, WEI F S, et al.. Molecular biological detection for adulterated meat[J]. J. Food Sci. Biotechnol., 2017, 36(7): 773-777. | |
| 4 | 李宗梦,赵良娟,赵宏,等.肉及肉制品动物源性成分鉴别技术研究进展[J].食品研究与开发,2014,35(18):122-126+127. |
| LI Z M, ZHAO L J, ZHAO H, et al.. Research progress in identification techniques of animal ingredient in meat and meat products[J]. Food Res. Dev., 2014, 35(18): 122-126+127. | |
| 5 | KUMAR A, KUMAR R R, SHARMA B D, et al.. Identification of species origin of meat and meat products on the DNA basis: a review[J]. Crit. Rev. Food Sci. Nutr., 2015, 55(10): 1340-1351. |
| 6 | CAVIN C, COTTENET G, COOPER K M, et al.. Meat vulnerabilities to economic food adulteration require new analytical solutions[J]. Chim. Aarau., 2018, 72(10): 697-703. |
| 7 | ZIA Q, ALAWAMI M, MOKHTAR N F K, et al.. Current analytical methods for porcine identification in meat and meat products[J/OL]. Food Chem., 2020, 324: 126664[2023-10-12]. . |
| 8 | STACHNIUK A, SUMARA A, MONTOWSKA M, et al.. Liquid chromatography-mass spectrometry bottom-up proteomic methods in animal species analysis of processed meat for food authentication and the detection of adulterations[J]. Mass Spectrom. Rev., 2021, 40(1): 3-30. |
| 9 | KITPIPIT T, SITTICHAN K, THANAKIATKRAI P. Are these food products fraudulent? Rapid and novel triplex-direct PCR assay for meat identification[J]. Foren. Sci. Intern.Genet. , 2013, 4(1): 33-34. |
| 10 | XU R, WEI S, ZHOU G, et al.. Multiplex TaqMan locked nucleic acid real-time PCR for the differential identification of various meat and meat products[J]. Meat Sci., 2018, 137: 41-46. |
| 11 | LI T, WANG J, WANG Z, et al.. Quantitative determination of mutton adulteration with single-copy nuclear genes by real-time PCR[J/OL]. Food Chem., 2021, 344: 128622[2023-12-01]. . |
| 12 | FLOREN C, WIEDEMANN I, BRENIG B, et al.. Species identification and quantification in meat and meat products using droplet digital PCR (ddPCR)[J]. Food Chem., 2015, 173: 1054-1058. |
| 13 | LIN L, ZHENG Y, HUANG H, et al.. A visual method to detect meat adulteration by recombinase polymerase amplification combined with lateral flow dipstick[J/OL]. Food Chem., 2021, 354: 129526[2023-10-11]. . |
| 14 | WANG J, WAN Y, CHEN G, et al.. Colorimetric detection of horse meat based on loop-mediated isothermal amplification (LAMP)[J]. Food Anal. Meth., 2019, 12(11): 2535-2541. |
| 15 | CAO Y, ZHENG K, JIANG J, et al.. A novel method to detect meat adulteration by recombinase polymerase amplification and SYBR green I[J]. Food Chem., 2018, 266: 73-78. |
| 16 | HOSSAIN M A, ALI M E, HAMID S B ABD, et al.. Double gene targeting multiplex polymerase chain reaction–restriction fragment length polymorphism assay discriminates beef, buffalo, and pork substitution in frankfurter products[J]. J. Agric. Food Chem., 2016, 64(32): 6343-6354. |
| 17 | LOPEZ-OCEJA A, NUÑEZ C, BAETA M, et al.. Species identification in meat products: a new screening method based on high resolution melting analysis of cyt b gene[J]. Food Chem., 2017, 237: 701-706. |
| 18 | 叶德培,施昌彦,金华彰,等.通用计量术语及定义 JJF 1001-2011[M].北京: 中国标准出版社. |
| 19 | QIN Y, ZHANG X, DAI X, et al.. Graphene oxide-assisted synthesis of Pt-co alloy nanocrystals with high-index facets and enhanced electrocatalytic properties[J]. Small, 2016, 12(4): 524-533. |
| 20 | YANG Y, LI L, YANG H, et al.. Development of certified matrix-based reference material as a calibrator for genetically modified rice G6H1 analysis[J]. J. Agric. Food Chem., 2018, 66(14): 3708-3715. |
| 21 | LI J, LI L, ZHANG L, et al.. Development of a certified genomic DNA reference material for detection and quantification of genetically modified rice KMD[J]. Anal. Bioanal. Chem., 2020, 412(25): 7007-7016. |
| 22 | XU J, QU S, SUN N, et al.. Construction of a reference material panel for detecting KRAS/NRAS/EGFR/BRAF/MET mutations in plasma ctDNA[J]. J. Clin. Pathol., 2021, 74(5): 314-320. |
| 23 | DONG L, WANG X, WANG S, et al.. Interlaboratory assessment of droplet digital PCR for quantification of BRAF V600E mutation using a novel DNA reference material[J/OL]. Talanta, 2020, 207: 120293[2023-10-12]. . |
| 24 | HE H J, DAS B, CLEVELAND M H, et al.. Development and interlaboratory evaluation of a NIST Reference Material RM 8366 for EGFR and MET gene copy number measurements[J]. Clin. Chem. Lab. Med., 2019, 57(8): 1142-1152. |
| 25 | VALLEJO C V, TERE C P, CALDERON M N, et al.. Development of a genomic DNA reference material for Salmonella enteritidis detection using polymerase chain reaction[J/OL]. Mol. Cell Probes, 2021, 55: 101690[2023-10-13]. . |
| 26 | STEFFEN C R, KIESLER K M, BORSUK L A, et al.. Beyond the STRs: a comprehensive view of current forensic DNA markers characterized in the PCR-based DNA profiling standard SRM 2391D[J/OL]. Foren. Sci. Int. Genet. Suppl. Series, 2017,6:426-427. |
| 27 | QIONG H E, CHANGHUI L, HUIJUN W, et al.. The method development of typing multiplex-SNP with fluorescein-labeled and investigation of SNP-pseudohaplotype of mitochondrial DNA[J]. Acta Metall. Sinica, 2011(5):81-82. |
| 28 | ZHAO S, ZHAO Y. Application and preparation progress of stable isotope reference materials in traceability of agricultural products[J]. Crit. Rev. Anal. Chem., 2021, 51(8): 742-753. |
| 29 | 卢晓华,汪斌,周桃庚,等.标准物质的定值及均匀性、稳定性评估 JJF 1343-2022[M]. 北京: 中国标准出版社, 2022: 1-66. |
| 30 | 游英华,赵志,李亚楠,等.数字PCR在转基因植物检测中的应用[J].中国生物防治学报,2022,38(5):1143-1148. |
| YOU Y H, ZHAO Z, LI Y N, et al.. Application of digital PCR in the detection of genetically modified plants[J]. Chin. J. Biol. Contr., 2022, 38(5): 1143-1148. | |
| 31 | 陈林军,崔强,于志超,等.数字PCR技术在动物疫病检测中的应用[J].畜牧与饲料科学,2021,42(6):124-128. |
| CHEN L J, CUI Q, YU Z C, et al.. Application of digital PCR assay in detection of animal epidemic diseases[J]. Anim. Husb. Feed. Sci., 2021, 42(6): 124-128. | |
| 32 | 王森,陈东亮,黄丛林,等.基于PCR的植物病毒检测技术研究进展[J].植物检疫,2021,35(3):1-8. |
| WANG S, CHEN D L, HUANG C L, et al.. Progress in PCR-based techniques for detection of plant viruses[J]. Plant Quar., 2021, 35(3): 1-8. | |
| 33 | 王霞,郭若晖,董莲华.新型冠状病毒B.1.1.7变异株特异性数字PCR定量方法研究[J].计量学报,2023(5):826-832. |
| WANG X, GUO R H, DONG L H. The establishment of digital PCR quantitative method for strain B.1.1.7 of SARS-CoV-2[J]. Acta Metrol. Sin., 2023(5): 826-832. | |
| 34 | 门佩璇,肖宇锋,张玢.基于计量学方法分析数字PCR技术的临床应用现状与技术热点[J].生物技术进展,2022,12(4):606-613. |
| MEN P X, XIAO Y F, ZHANG F. Analysis of clinical application and technology hotspots of digital PCR technology based on bibliometrics methods[J]. Curr. Biotechnol., 2022, 12(4): 606-613. |
| [1] | Yanyan JIA, Luyang DUANMU. Study on the Mechanism of Bubble Generation and Inhibition Method During Digital PCR Amplification Process [J]. Current Biotechnology, 2025, 15(4): 693-701. |
| [2] | Xin QI, Xinran LI, Yaning GUO, Dan WANG, Kai LI, Qiong WU, Liang LI. Comparison of Endogenous Genes in Maize Based on Digital PCR [J]. Current Biotechnology, 2025, 15(1): 78-85. |
| [3] | Hongbo FAN, Liangyong HU, Songqing HU. Establishment of Digital PCR Detection System for Helicobacter pyloriureC and 23S rDNA [J]. Current Biotechnology, 2024, 14(5): 868-874. |
| [4] | Kai LI, Jun FU, Rui CHEN, Xiaoyun CHEN, Liang LI. Transgenic Quantitative Detection Method Based on PCR-free High-throughput Sequencing Technology [J]. Current Biotechnology, 2024, 14(4): 610-617. |
| [5] | Enze CHENG-CHEN, Minghong JIA, Yueying LI. Research Progress of Nucleic Acid Reference Materials of Food-borne Pathogenic Bacteria [J]. Current Biotechnology, 2023, 13(2): 195-200. |
| [6] | Yan LI, Zhenzhou YANG, Wen LIANG. Development of Subsets CD4+ Proportion of T Lymphocyte Standard Reference Materials [J]. Current Biotechnology, 2022, 12(4): 600-605. |
| [7] | Peixuan MEN, Yufeng XIAO, Bin ZHANG. Analysis of Clinical Application and Technology Hotspots of Digital PCR Technology Based on Bibliometrics Methods [J]. Current Biotechnology, 2022, 12(4): 606-613. |
| [8] | LU Haiqiang1, JIAO Xinya1,2, WU Siyuan2, WANG Yali2, LIU Lu2, CHENG Shumei1, ZHANG Xiao3*, SU Xiaofeng2*. Application Progress on the Digital PCR in Detection of Foodborne Pathogenic Bacteria [J]. Curr. Biotech., 2021, 11(3): 260-268. |
| [9] | WANG Di, WU Xiao, WANG Zhidong, GAO Yunhua*. Research Progress on the Flow Cytometry Counting for Single Nucleotide Molecule [J]. Curr. Biotech., 2020, 10(6): 573-578. |
| [10] | ZHENG Zifan, LIU Fangfang, LIU Weixiao, JIN Wujun, LI Liang*. Application of Digital PCR Technology in the Development of Nucleic Acid Reference Materials [J]. Curr. Biotech., 2020, 10(6): 579-584. |
| [11] | WANG Shangjun1, DONG Lianhua2. Research on Calibration Method of Digital PCR Instrument [J]. Curr. Biotech., 2020, 10(6): 585-589. |
| [12] | YANG Jiayi1§*, CHEN Guifang2§, GAO Yunhuan1, WANG Zhidong1, WU Xiao1. Research Progress of Reference Material for HPV Nucleic Acid Detection [J]. Curr. Biotech., 2020, 10(6): 590-596. |
| [13] | ZHENG Zifan, LIU Weixiao, JIN Wujun, LI Liang*. Progress on Reference Materials Based on Mass Balance Method [J]. Curr. Biotech., 2020, 10(6): 623-629. |
| [14] | YAN Anxin1, CHEN Jing1, LIU Hongdi1, LI Yongjiu1, PENG Zhu1, ZHAO Hemiao1, LI Liang2, ZHAO Xingchun1*. Preparation of Plasmid DNA Reference Material Containing Human STR D6S1043-1 Fragment [J]. Curr. Biotech., 2020, 10(6): 630-636. |
| [15] | HU Sihong, YOU Guoye. Application Prospects of Digital PCR in Detection of SARS-CoV-2 [J]. Curr. Biotech., 2020, 10(6): 674-679. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||