Current Biotechnology ›› 2023, Vol. 13 ›› Issue (5): 704-711.DOI: 10.19586/j.2095-2341.2023.0049
• Reviews • Previous Articles Next Articles
Linlin DU(
), Fei XIE(
), Xuemei MA(
)
Received:2023-04-14
Accepted:2023-06-07
Online:2023-09-25
Published:2023-10-10
Contact:
Fei XIE,Xuemei MA
通讯作者:
谢飞,马雪梅
作者简介:杜琳琳 E-mail: LinlinDu@emails.bjut.edu.cn
基金资助:CLC Number:
Linlin DU, Fei XIE, Xuemei MA. Pro-oncogenic Function and Therapeutic Significance of SALL4[J]. Current Biotechnology, 2023, 13(5): 704-711.
杜琳琳, 谢飞, 马雪梅. SALL4的促癌功能及治疗意义[J]. 生物技术进展, 2023, 13(5): 704-711.
| miRNAs | 肿瘤类型 | miRNAs对SALL4的调控 | 功能 | 参考文献 |
|---|---|---|---|---|
| miR-16 | 胃癌、胶质瘤 | 下调SALL4 | 抑制肿瘤增殖和迁移 | [ |
| miR-188-5p | 胃癌 | 上调SALL4 | 促进增殖和迁移 | [ |
| miR-219-5p | 结直肠癌 | 下调SALL4 | 抑制细胞增殖、迁移和侵袭,降低耐药性,促进细胞凋亡 | [ |
| miR-33b | 乳腺癌 | 下调SALL4 | 抑制乳腺癌转移 | [ |
| miR-195 | 胃癌 | 下调SALL4 | 抑制人胃癌细胞的迁移、侵袭及上皮间质转化 | [ |
| miR-103/miR-195/miR-15b | 胶质瘤 | 下调SALL4 | 抑制胶质瘤的增殖、迁移和侵袭,促进细胞凋亡 | [ |
| miR-181b | 胶质瘤 | 下调SALL4 | 抑制胶质瘤的增殖、迁移和侵袭,促进细胞凋亡 | [ |
| miRNA-485-5p | 急性髓系白血病 | 下调SALL4 | 抑制急性髓系白血病的增殖 | [ |
| miR-107 | 胶质瘤 | 下调SALL4 | 抑制胶质瘤细胞增殖并促进细胞凋亡 | [ |
| miR-3622a-3p | 结直肠癌 | 下调SALL4 | 抑制增殖、细胞周期、迁移、侵袭和干性特征,促进细胞凋亡 | [ |
| miR-15a | 肝癌 | 下调SALL4 | 抑制增殖、迁移、侵袭和生存 | [ |
| miR-98 | 肺癌 | 下调SALL4 | 抑制肺癌增殖、迁移和侵袭 | [ |
Table 1 Summary of miRNAs targeting SALL4 in tumors
| miRNAs | 肿瘤类型 | miRNAs对SALL4的调控 | 功能 | 参考文献 |
|---|---|---|---|---|
| miR-16 | 胃癌、胶质瘤 | 下调SALL4 | 抑制肿瘤增殖和迁移 | [ |
| miR-188-5p | 胃癌 | 上调SALL4 | 促进增殖和迁移 | [ |
| miR-219-5p | 结直肠癌 | 下调SALL4 | 抑制细胞增殖、迁移和侵袭,降低耐药性,促进细胞凋亡 | [ |
| miR-33b | 乳腺癌 | 下调SALL4 | 抑制乳腺癌转移 | [ |
| miR-195 | 胃癌 | 下调SALL4 | 抑制人胃癌细胞的迁移、侵袭及上皮间质转化 | [ |
| miR-103/miR-195/miR-15b | 胶质瘤 | 下调SALL4 | 抑制胶质瘤的增殖、迁移和侵袭,促进细胞凋亡 | [ |
| miR-181b | 胶质瘤 | 下调SALL4 | 抑制胶质瘤的增殖、迁移和侵袭,促进细胞凋亡 | [ |
| miRNA-485-5p | 急性髓系白血病 | 下调SALL4 | 抑制急性髓系白血病的增殖 | [ |
| miR-107 | 胶质瘤 | 下调SALL4 | 抑制胶质瘤细胞增殖并促进细胞凋亡 | [ |
| miR-3622a-3p | 结直肠癌 | 下调SALL4 | 抑制增殖、细胞周期、迁移、侵袭和干性特征,促进细胞凋亡 | [ |
| miR-15a | 肝癌 | 下调SALL4 | 抑制增殖、迁移、侵袭和生存 | [ |
| miR-98 | 肺癌 | 下调SALL4 | 抑制肺癌增殖、迁移和侵袭 | [ |
| 1 | AL-BARADIE R, YAMADA K, HILAIRE C S T, et al.. Duane radial ray syndrome (Okihiro syndrome) maps to 20q13 and results from mutations in SALL4, a new member of the SAL family[J]. Am. J. Hum. Genet., 2002, 71(5): 1195-1199. |
| 2 | ELLING U, KLASEN C, EISENBERGER T, et al.. Murine inner cell mass-derived lineages depend on Sall4 function[J]. Proc. Natl. Acad. Sci. USA, 2006, 103(44): 16319-16324. |
| 3 | SUN B, XU L, BI W, et al.. SALL4 oncogenic function in cancers: mechanisms and therapeutic relevance[J/OL]. Int. J. Mol. Sci., 2022, 23(4): 2053[2023-04-06]. . |
| 4 | TATETSU H, KONG N R, CHONG G, et al.. SALL4, the missing link between stem cells, development and cancer[J]. Gene, 2016, 584(2): 111-119. |
| 5 | PANTIER R, CHHATBAR K, QUANTE T, et al.. SALL4 controls cell fate in response to DNA base composition[J]. Mol. Cell, 2021, 81(4): 845-858. |
| 6 | KONG N R, BASSAL M A, TAN H K, et al.. Zinc finger protein SALL4 functions through an AT-rich motif to regulate gene expression[J/OL]. Cell Rep., 2021, 34(1): 108574[2023-04-06]. . |
| 7 | LI B, CHEN S, SUN K, et al.. Genetic analyses identified a SALL4 gene mutation associated with holt-oram syndrome[J]. DNA Cell Biol., 2018, 37(4): 398-404. |
| 8 | LIM C Y, LTAM W, ZHANG J, et al.. Sall4 regulates distinct transcription circuitries in different blastocyst-derived stem cell lineages[J]. Cell Stem Cell, 2008, 3(5): 543-554. |
| 9 | ZHANG J, LTAM W, TONG G Q, et al.. Sall4 modulates embryonic stem cell pluripotency and early embryonic development by the transcriptional regulation of Pou5f1[J]. Nat. Cell Biol., 2006, 8(10): 1114-1123. |
| 10 | FUJII Y, YOSHIHASHI K, SUZUKI H, et al.. CDX1 confers intestinal phenotype on gastric epithelial cells via induction of stemness-associated reprogramming factors SALL4 and KLF5[J]. Proc. Natl. Acad. Sci. USA, 2012, 109(50): 20584-20589. |
| 11 | BARD J D, GELEBART P, AMIN H M, et al.. Signal transducer and activator of transcription 3 is a transcriptional factor regulating the gene expression of SALL4[J]. FASEB J., 2009, 23(5): 1405-1414. |
| 12 | BÖHM J, SUSTMANN C, WILHELM C, et al.. SALL4 is directly activated by TCF/LEF in the canonical Wnt signaling pathway[J]. Biochem. Biophys. Res. Commun., 2006, 348(3): 898-907. |
| 13 | HO L, JOTHI R, RONAN J L, et al.. An embryonic stem cell chromatin remodeling complex, esBAF, is an essential component of the core pluripotency transcriptional network[J]. Proc. Natl. Acad. Sci. USA, 2009, 106(13): 5187-5191. |
| 14 | MA Y S, LIU J B, LIN L, et al.. Exosomal microRNA-15a from mesenchymal stem cells impedes hepatocellular carcinoma progression via downregulation of SALL4[J/OL]. Cell Death Discov., 2021, 7(1): 224[2023-04-06]. . |
| 15 | JIANG X, WANG Z. miR-16 targets SALL4 to repress the proliferation and migration of gastric cancer[J]. Oncol. Lett., 2018, 16(3): 3005-3012. |
| 16 | WANG W, WANG H R, JI W G, et al.. MiRNA-485-5p suppresses the proliferation of acute myeloid leukemia via targeting SALL4[J]. Eur. Rev. Med. Pharmacol. Sci., 2019, 23(11): 4842-4849. |
| 17 | ZHOU Y, LIU Y, HU C, et al.. microRNA-16 inhibits the proliferation, migration and invasion of glioma cells by targeting Sal-like protein 4[J]. Int. J. Mol. Med., 2016, 38(6): 1768-1776. |
| 18 | WANG M, QIU R, GONG Z, et al.. miR-188-5p emerges as an oncomiRNA to promote gastric cancer cell proliferation and migration via upregulation of SALL4[J]. J. Cell. Biochem., 2019, 120(9): 15027-15037. |
| 19 | CHENG J, DENG R, ZHANG P, et al.. miR-219-5p plays a tumor suppressive role in colon cancer by targeting oncogene Sall4[J]. Oncol. Rep., 2015, 34(4): 1923-1932. |
| 20 | LIN Y, LIU A Y, FAN C, et al.. microRNA-33b inhibits breast cancer metastasis by targeting HMGA2, SALL4 and Twist1[J/OL]. Sci. Rep., 2015, 5: 9995[2023-04-06]. . |
| 21 | 李英, 尹宁伟, 胡扬喜, 等. miR-195靶向SALL4对胃癌细胞迁移侵袭及上皮间质转化的影响[J]. 中华内分泌外科杂志, 2021, 15(6): 588-593. |
| 22 | CHEN L P, ZHANG N N, REN X Q, et al.. miR-103/miR-195/miR-15b regulate SALL4 and inhibit proliferation and migration in glioma[J/OL]. Molecules, 2018, 23(11): 2938[2023-04-06]. . |
| 23 | ZHOU Y, PENG Y, LIU M, et al.. microRNA-181b inhibits cellular proliferation and invasion of glioma cells via targeting sal-like protein 4[J]. Oncol. Res., 2017, 25(6): 947-957. |
| 24 | HE J, ZHANG W, ZHOU Q, et al.. Low-expression of microRNA-107 inhibits cell apoptosis in glioma by upregulation of SALL4[J]. Int. J. Biochem. Cell Biol., 2013, 45(9): 1962-1973. |
| 25 | CHANG S, SUN G, ZHANG D, et al. miR-3622a-3p acts as a tumor suppressor in colorectal cancer by reducing stemness features and EMT through targeting spalt-like transcription factor 4[J/OL]. Cell Death Dis., 2020, 11(7): 592[2023-04-06]. . |
| 26 | LIU W, XIAO P, WU H, et al.. microRNA-98 plays a suppressive role in non-small cell lung cancer through inhibition of SALL4 protein expression[J]. Oncol. Res., 2017, 25(6): 975-988. |
| 27 | YANG F, YAO Y, JIANG Y, et al.. Sumoylation is important for stability, subcellular localization, and transcriptional activity of SALL 4, an essential stem cell transcription factor[J/OL]. J. Biol. Chem., 2016, 291(1): 428[2023-04-06]. . |
| 28 | ITOU J, LI W, ITO S, et al.. Sal-like 4 protein levels in breast cancer cells are post-translationally down-regulated by tripartite motif-containing 21[J]. J. Biol. Chem., 2018, 293(17): 6556-6564. |
| 29 | YANG C, ZHANG X, GAO C, et al.. NRBP1 negatively regulates SALL4 to reduce the invasion and migration, promote apoptosis and increase the sensitivity to chemotherapy drugs of breast cancer cells[J/OL]. Oncol. Lett., 2022, 23(4): 139[2023-04-06]. . |
| 30 | DU W, NI L, LIU B, et al.. Upregulation of SALL4 by EGFR activation regulates the stemness of CD44-positive lung cancer[J/OL]. Oncogenesis, 2018, 7(4): 36[2023-04-06]. . |
| 31 | FAN H, CUI Z, ZHANG H, et al.. DNA demethylation induces SALL4 gene re-expression in subgroups of hepatocellular carcinoma associated with Hepatitis B or C virus infection[J]. Oncogene, 2017, 36(17): 2435-2445. |
| 32 | UENO S, LU J, HE J, et al.. Aberrant expression of SALL4 in acute B cell lymphoblastic leukemia: mechanism, function, and implication for a potential novel therapeutic target[J]. Exp. Hematol., 2014, 42(4): 307-316. |
| 33 | MA Y, CUI W, YANG J, et al.. SALL4, a novel oncogene, is constitutively expressed in human acute myeloid leukemia (AML) and induces AML in transgenic mice[J]. Blood, 2006, 108(8): 2726-2735. |
| 34 | YANG J, CHAI L, GAO C, et al.. SALL4 is a key regulator of survival and apoptosis in human leukemic cells[J]. Blood, 2008, 112(3): 805-813. |
| 35 | DIENER J, BAGGIOLINI A, PERNEBRINK M, et al.. Epigenetic control of melanoma cell invasiveness by the stem cell factor SALL4[J/OL]. Nat. Commun., 2021, 12(1): 5056[2023-04-06]. . |
| 36 | CHEN T, TSANG J Y S, SU X C, et al.. SALL4 promotes tumor progression in breast cancer by targeting EMT[J]. Mol. Carcinog., 2020, 59(10): 1209-1226. |
| 37 | YUAN X, ZHANG X, ZHANG W, et al.. SALL4 promotes gastric cancer progression through activating CD44 expression[J/OL]. Oncogenesis, 2016, 5(11): e268[2023-04-06]. . |
| 38 | SHAO M, ZHANG J, ZHANG J, et al.. SALL4 promotes gastric cancer progression via hexokinase Ⅱ mediated glycolysis[J]. Cancer Cell Int., 2020, 20(1): 1-13. |
| 39 | PAN L, LIANG W, GU J, et al.. Long noncoding RNA DANCR is activated by SALL4 and promotes the proliferation and invasion of gastric cancer cells[J]. Oncotarget, 2017, 9(2): 1915-1930. |
| 40 | DENG G, ZHU L, HUANG F, et al.. SALL4 is a novel therapeutic target in intrahepatic cholangiocarcinoma[J]. Oncotarget, 2015, 6(29): 27416-27426. |
| 41 | FORGHANIFARD M M, KASEBI P, ABBASZADEGAN M R. SOX2/SALL4 stemness axis modulates Notch signaling genes to maintain self-renewal capacity of esophageal squamous cell carcinoma[J]. Mol. Cell. Biochem., 2021, 476(2): 921-929. |
| 42 | YANG Y, WANG X, LIU Y, et al.. Up-regulation of SALL4 is associated with survival and progression via putative WNT pathway in gastric cancer[J/OL]. Front. Cell Dev. Biol., 2021, 9: 600344[2023-04-06]. . |
| 43 | ZHANG L, XU Z, XU X, et al.. SALL4, a novel marker for human gastric carcinogenesis and metastasis[J]. Oncogene, 2014, 33(48): 5491-5500. |
| 44 | ITOU J, TANAKA S, LI W, et al.. The Sal-like 4-integrin α6β1 network promotes cell migration for metastasis via activation of focal adhesion dynamics in basal-like breast cancer cells[J]. Biochim. Biophys. Acta Mol. Cell Res., 2017, 1864(1): 76-88. |
| 45 | 王林琳, 孙振亮. 氨基酸转运体在肿瘤代谢中的研究进展[J]. 生物技术进展, 2022, 12(1): 50-56. |
| 46 | NGO D C, VERVERIS K, TORTORELLA S M, et al.. Introduction to the molecular basis of cancer metabolism and the Warburg effect[J]. Mol. Biol. Rep., 2015, 42(4): 819-823. |
| 47 | KIM J, XU S, XIONG L, et al.. SALL4 promotes glycolysis and chromatin remodeling via modulating HP1α-Glut1 pathway[J]. Oncogene, 2017, 36(46): 6472-6479. |
| 48 | LIU T, SHYH-CHANG N. Oncofetal SALL4-driven tumorigenesis is highly dependent on oxidative phosphorylation, revealing therapeutic opportunities[J]. Gastroenterology, 2019, 157(6): 1475-1477. |
| 49 | TAN J L, LI F, YEO J Z, et al.. New high-throughput screening identifies compounds that reduce viability specifically in liver cancer cells that express high levels of SALL4 by inhibiting oxidative phosphorylation[J]. Gastroenterology, 2019, 157(6): 1615-1629. |
| 50 | LI A, JIAO Y, YONG K J, et al.. SALL4 is a new target in endometrial cancer[J]. Oncogene, 2015, 34(1): 63-72. |
| 51 | JIANG G, LIU C T. Knockdown of SALL4 overcomes cisplatin-resistance through AKT/mTOR signaling in lung cancer cells[J]. Int. J. Clin. Exp. Pathol., 2018, 11(2): 634-641. |
| 52 | NIE X, GUO E, WU C, et al.. SALL4 induces radioresistance in nasopharyngeal carcinoma via the ATM/Chk2/p53 pathway[J]. Cancer Med., 2019, 8(4): 1779-1792. |
| 53 | HANAHAN D, WEINBERG R A. The hallmarks of cancer[J]. Cell, 2000, 100(1): 57-70. |
| 54 | SUN J, ZHAO Z, ZHANG W, et al.. Spalt-like protein 4 (SALL4) promotes angiogenesis by activating vascular endothelial growth factor A (VEGFA) signaling[J/OL]. Med. Sci. Monit., 2020, 26: e920851[2023-04-06]. . |
| 55 | SUN J, TANG Q, GAO Y, et al.. VHL mutation-mediated SALL4 overexpression promotes tumorigenesis and vascularization of clear cell renal cell carcinoma via Akt/GSK-3β signaling[J/OL]. J. Exp. Clin. Cancer Res., 2020, 39(1): 104[2023-04-06]. . |
| 56 | CHEN Z, WU H, JIANG S, et al.. Serum SALL4 as a predictive biomarker for the prognosis of patients with hepatocellular carcinoma who underwent nonsurgical treatment[J/OL]. Medicine, 2022, 101(43): e31200[2023-04-06]. . |
| 57 | ARDALAN KHALES S, ABBASZADEGAN M R, ABDOLLAHI A, et al.. SALL4 as a new biomarker for early colorectal cancers[J]. J. Cancer Res. Clin. Oncol., 2015, 141(2): 229-235. |
| 58 | YANAGIHARA N, KOBAYASHI D, KURIBAYASHI K, et al.. Significance of SALL4 as a drug‑resistant factor in lung cancer[J]. Int. J. Oncol., 2015, 46(4): 1527-1534. |
| 59 | JEONG H W, CUI W, YANG Y, et al.. SALL4, a stem cell factor, affects the side population by regulation of the ATP-binding cassette drug transport genes[J/OL]. PLoS ONE, 2011, 6(4): e18372[2023-04-06]. . |
| 60 | MOEIN S, TENEN D G, AMABILE G, et al.. SALL4: an intriguing therapeutic target in cancer treatment[J/OL]. Cells, 2022, 11(16): 2601[2023-04-06]. . |
| 61 | GAO C, DIMITROV T, YONG K J, et al.. Targeting transcription factor SALL4 in acute myeloid leukemia by interrupting its interaction with an epigenetic complex[J]. Blood, 2013, 121(8): 1413-1421. |
| 62 | LIU B H, JOBICHEN C, BRIAN CHIA C S, et al.. Targeting cancer addiction for SALL4 by shifting its transcriptome with a pharmacologic peptide[J]. Proc. Natl. Acad. Sci. USA, 2018, 115(30): E7119-E7128. |
| 63 | YONG K J, LI A, OU W B, et al.. Targeting SALL4 by entinostat in lung cancer[J]. Oncotarget, 2016, 7(46): 75425-75440. |
| 64 | YANG J, GAO C, LIU M, et al.. Induction of a SALL4-dependency for targeted cancer therapy[J//OL]. BioRxiv, 2020: 2020.2007.2010.197434[2023-04-06]. . |
| 65 | LIU J, SAUER M A, HUSSEIN S G, et al.. SALL4 and microRNA: the role of let-7[J/OL]. Genes, 2021, 12(9): 1301[2023-04-06]. . |
| 66 | YANG J, GAO C, LIU M, et al.. Targeting an inducible SALL4-mediated cancer vulnerability with sequential therapy[J]. Cancer Res., 2021, 81(23): 6018-6028. |
| 67 | DONOVAN K A, AN J, NOWAK R P, et al.. Thalidomide promotes degradation of SALL4, a transcription factor implicated in Duane radial ray syndrome[J/OL]. eLife, 2018, 7: 1-6[2023-04-06]. . |
| 68 | XIONG J. SALL4: engine of cell stemness[J]. Curr. Gene Ther., 2014, 14(5): 400-411. |
| 69 | 常澍晨. 白花蛇舌草—半边莲药对通过下调SALL4调控Wnt/β-catenin信号通路抑制结肠癌的作用机制研究[D]. 南京: 南京中医药大学, 2022. |
| [1] | Yuqin BIAN, Keran DONG, Junzi LU, Enming ZHONG, Wanying GU, Jingshu ZHAO, Hongshu SUI. Clinical Progress in Targeted Therapy and Immunotherapy in Breast Cancer [J]. Current Biotechnology, 2025, 15(2): 234-240. |
| [2] | Yeerkenbieke BUERLAN, Wenjia GUO, Xiaogang DONG. Advances on the Function of POSTN in Tumor Microenvironment [J]. Current Biotechnology, 2024, 14(2): 205-210. |
| [3] | Weijian ZHAO, Hongting XU, Xiangqian XIAO, Wang SHENG. Research Progress on Hippo Signaling Pathway in Cancer Stem Cell [J]. Current Biotechnology, 2024, 14(2): 211-220. |
| [4] | Pengxiao ZHANG, Nian HU. The Research Progress on Action Mechanism of Melanoma Immunotherapy [J]. Current Biotechnology, 2023, 13(6): 900-906. |
| [5] | Kehao CAO, Junli ZHU, Huashan HE, Weizhuo XU. Impact of the Fourth Modifications of Patent Laws on Biotechnology Patent Applications and Industry Development [J]. Current Biotechnology, 2023, 13(5): 663-670. |
| [6] | Yuemaierabola ANWAIER, Lili SUN, Yeerkenbieke BUERLAN, Wenjia GUO. Advances on the Role of Piezo1 in Cancer [J]. Current Biotechnology, 2023, 13(5): 712-717. |
| [7] | Min YU, Min WANG, Yanhuan WEI, Yiyi LIU. Analysis of Potential Key Molecular Biomarkers and Immune Infiltration Characteristics of SARS-CoV-2 Virus Infection [J]. Current Biotechnology, 2022, 12(5): 760-768. |
| [8] | Jiawei YAO, Bo QIU. Research Progress of Body Fluid Markers of Osteoarthritis Synovial Lesions [J]. Current Biotechnology, 2022, 12(3): 373-378. |
| [9] | Jiaxin YONG, Quanfeng WEI, Shanghui LIU. Expression Profile Screening of lncRNA and ceRNA Network Construction in Gastric Cancer Based on TCGA and GEO Databases [J]. Current Biotechnology, 2022, 12(1): 149-157. |
| [10] | Jinping XIAO, Cheng LI, Yundi CAO, Zhijian SUN, Ping KANG, Xiaomei LAN. Research Progress on the Relationship Between RET Protooncogene and Tumor [J]. Current Biotechnology, 2022, 12(1): 57-62. |
| [11] | LIAO Taotao1, TANG Junjie1, SHI Xiaoxiang1, ZHANG Weijie2, MAO Guanghua1*, WU Xiangyang1*. Study on the Immunotoxicity of Short-term Exposure of Decabromodiphenyl Ether (BDE-209) in Adult Mice [J]. Curr. Biotech., 2021, 11(2): 204-213. |
| [12] | WANG Rui1, LI Liang2. #br# Cyclic RNA and its Application in Ecotoxicology [J]. Curr. Biotech., 2021, 11(1): 16-25. |
| [13] | LIU Mengyu1, XIE Fei1, ZHANG Xin1, ZHAO Pengxiang1,2*. Review of Biomarkers for Glioblastoma [J]. Curr. Biotech., 2019, 9(2): 129-138. |
| [14] | LU Yan1, CHEN Ying2, LU Qingming1, ZHANG Ying1, LI Zhaohui1, XIE Xiaohua1*. Alteration of Myocardial Macrophage Polarization Marker Proteins After Rat Traumatic Hemorrhagic Shock [J]. Curr. Biotech., 2017, 7(3): 225-229. |
| [15] | WANG Jiao-jiao1, GENG Yuan-yuan1, ZHANG Jia-yao2*, JIANG Wei1. Progress for Biomarkers and Detection Methods of Circulating Tumor Cell of Hepatocellular Carcinoma [J]. Curr. Biotech., 2015, 5(2): 113-119. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||