Current Biotechnology ›› 2025, Vol. 15 ›› Issue (2): 234-240.DOI: 10.19586/j.2095-2341.2024.0165
• Reviews • Previous Articles Next Articles
Yuqin BIAN(
), Keran DONG(
), Junzi LU(
), Enming ZHONG, Wanying GU(
), Jingshu ZHAO(
), Hongshu SUI(
)
Received:2024-10-29
Accepted:2025-02-12
Online:2025-03-25
Published:2025-04-29
Contact:
Wanying GU,Jingshu ZHAO,Hongshu SUI
边裕钦(
), 董柯然(
), 卢俊孜(
), 钟恩鸣, 谷婉莹(
), 赵靖舒(
), 隋宏书(
)
通讯作者:
谷婉莹,赵靖舒,隋宏书
作者简介:边裕钦 E-mail: 1664591559@qq.com;基金资助:CLC Number:
Yuqin BIAN, Keran DONG, Junzi LU, Enming ZHONG, Wanying GU, Jingshu ZHAO, Hongshu SUI. Clinical Progress in Targeted Therapy and Immunotherapy in Breast Cancer[J]. Current Biotechnology, 2025, 15(2): 234-240.
边裕钦, 董柯然, 卢俊孜, 钟恩鸣, 谷婉莹, 赵靖舒, 隋宏书. 乳腺癌靶向及免疫治疗的临床进展[J]. 生物技术进展, 2025, 15(2): 234-240.
| 1 | BODAI B I, TUSO P. Breast cancer survivorship: a comprehensive review of long-term medical issues and lifestyle recommendations[J]. Perm. J., 2015, 19(2): 48-79. |
| 2 | 苏晓. 乳腺癌的靶向药物治疗[J]. 医学信息, 2019, 32(12):46-49. |
| SU X. Targeted drug therapy for breast cancer[J]. Med. Inf., 2019, 32(12): 46-49. | |
| 3 | TUFAIL M, CUI J, WU C. Breast cancer: molecular mechanisms of underlying resistance and therapeutic approaches[J]. Am. J. Cancer Res., 2022, 12(7): 2920-2949. |
| 4 | SANTOLLA M F, MAGGIOLINI M. The FGF/FGFR system in breast cancer: oncogenic features and therapeutic perspectives[J/OL]. Cancers, 2020, 12(10): 3029[2025-02-26]. . |
| 5 | CHOI J, LEE S Y. Clinical characteristics and treatment of immune-related adverse events of immune checkpoint inhibitors[J/OL]. Immune Netw., 2020, 20(1): e9[2025-02-26]. . |
| 6 | RUSIDZÉ M, ADLANMÉRINI M, CHANTALAT E, et al.. Estrogen receptor-α signaling in post-natal mammary development and breast cancers[J]. Cell. Mol. Life Sci., 2021, 78(15): 5681-5705. |
| 7 | KAVARTHAPU R, DUFAU M L. Prolactin receptor gene transcriptional control, regulatory modalities relevant to breast cancer resistance and invasiveness[J/OL]. Front. Endocrinol., 2022, 13: 949396[2025-02-26]. . |
| 8 | 张文颖, 王思情, 张新妍, 等. JAK2/STAT3作为新型抗癌药物靶点的研究进展[J]. 生物技术进展, 2021, 11(1): 33-39. |
| ZHANG W Y, WANG S Q, ZHANG X Y, et al.. Research progress of JAK2/STAT3 served as a novel anticancer drug target[J]. Curr. Biotechnol., 2021, 11(1): 33-39. | |
| 9 | 钮嘉辉, 王小伟, 尤启冬. 选择性雌激素受体下调剂研究进展[J]. 药学进展, 2019, 43(4): 282-292. |
| NIU J H, WANG X W, YOU Q D. Advances in the development of selective estrogen receptor down-regulators[J]. Prog. Pharm. Sci., 2019, 43(4): 282-292. | |
| 10 | KAVARTHAPU R, ANBAZHAGAN R, DUFAU M L. Crosstalk between PRLR and EGFR/HER2 signaling pathways in breast cancer[J/OL]. Cancers, 2021, 13(18): 4685[2025-02-26]. . |
| 11 | CARVAJAL A, ESPINOZA N, KATO S, et al.. Progesterone pre-treatment potentiates EGF pathway signaling in the breast cancer cell line ZR-75[J]. Breast Cancer Res. Treat., 2005, 94(2): 171-183. |
| 12 | ZHU K, WU Y, HE P, et al.. PI3K/AKT/mTOR-targeted therapy for breast cancer[J/OL]. Cells, 2022, 11(16): 2508[2025-02-26]. . |
| 13 | GOLDHIRSCH A, WOOD W C, COATES A S, et al.. Strategies for subtypes: dealing with the diversity of breast cancer: highlights of the St. Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2011[J]. Ann. Oncol., 2011, 22(8): 1736-1747. |
| 14 | KASHYAP D, GARG V K, SANDBERG E N, et al.. Oncogenic and tumor suppressive components of the cell cycle in breast cancer progression and prognosis[J/OL]. Pharmaceutics, 2021, 13(4): 569[2025-02-26]. . |
| 15 | ROCCA A, FAROLFI A, BRAVACCINI S, et al.. Palbociclib (PD0332991): targeting the cell cycle machinery in breast cancer[J]. Expert Opin. Pharmacother., 2014, 15(3): 407-420. |
| 16 | HU Y, GAO J, WANG M, et al.. Potential prospect of CDK4/6 inhibitors in triple-negative breast cancer[J]. Cancer Manag. Res., 2021, 13: 5223-5237. |
| 17 | SHAH M, NUNES M R, STEARNS V. CDK4/6 inhibitors: game changers in the management of hormone receptor-positive advanced breast cancer?[J]. Oncology, 2018, 32(5): 216-222. |
| 18 | MARTIN J M, GOLDSTEIN L J. Profile of abemaciclib and its potential in the treatment of breast cancer[J]. Onco. Targets Ther., 2018, 11: 5253-5259. |
| 19 | MCCAIN J. First-in-class CDK4/6 inhibitor palbociclib could usher in a new wave of combination therapies for HR+, HER2- breast cancer[J]. P&T, 2015, 40(8): 511-520. |
| 20 | DEMICHELE A, CLARK A S, TAN K S, et al.. CDK 4/6 inhibitor palbociclib (PD0332991) in Rb+ advanced breast cancer: phase Ⅱ activity, safety, and predictive biomarker assessment[J]. Clin. Cancer Res., 2015, 21(5): 995-1001. |
| 21 | FINN R S, CROWN J P, LANG I, et al.. The cyclin-dependent kinase 4/6 inhibitor palbociclib in combination with letrozole versus letrozole alone as first-line treatment of oestrogen receptor-positive, HER2-negative, advanced breast cancer (PALOMA-1/TRIO-18): a randomised phase 2 study[J]. Lancet Oncol., 2015, 16(1): 25-35. |
| 22 | MAYER E L, DUECK A C, MARTIN M, et al.. Palbociclib with adjuvant endocrine therapy in early breast cancer (PALLAS): interim analysis of a multicentre, open-label, randomised, phase 3 study[J]. Lancet Oncol., 2021, 22(2): 212-222. |
| 23 | 张雪媛,孙建国,彭英,等.聚腺苷二磷酸核糖聚合酶抑制剂的抗肿瘤研究近况[J].药学进展,2013,37(5):215-221. |
| ZHANG X Y, SUN J G, PENG Y, et al.. Research status of poly (ADP-ribose) polymerase inhibitors in anti-tumor therapy[J]. Prog. Pharm. Sci., 2013, 37(5): 215-221. | |
| 24 | PATEL P S, ALGOUNEH A, HAKEM R. Exploiting synthetic lethality to target BRCA1/2-deficient tumors: where we stand[J]. Oncogene, 2021, 40(17): 3001-3014. |
| 25 | BORNSTEIN E, JIMENO A. Olaparib for the treatment of ovarian cancer[J]. Drugs Today (Barc), 2016, 52(1): 17-28. |
| 26 | ROBSON M, AIM S, SENKUS E, et al.. Olaparib for metastatic breast cancer in patients with a germline BRCA mutation[J]. N. Engl. J. Med., 2017, 377(6): 523-533. |
| 27 | ALZAHRANI A S. PI3K/Akt/mTOR inhibitors in cancer: at the bench and bedside[J]. Semin. Cancer Biol., 2019, 59: 125-132. |
| 28 | NITULESCU G, VAN DE VENTER M, NITULESCU G, et al.. The Akt pathway in oncology therapy and beyond (review)[J/OL]. Int. J. Oncol., 2018, 53(6): 2319-2331. |
| 29 | BHATTACHARJEE N, BARMA S, KONWAR N, et al.. Mechanistic insight of diabetic nephropathy and its pharmacotherapeutic targets: an update[J]. Eur. J. Pharmacol., 2016, 791: 8-24. |
| 30 | NITULESCU G M, MARGINA D, JUZENAS P, et al.. Akt inhibitors in cancer treatment: the long journey from drug discovery to clinical use (review)[J]. Int. J. Oncol., 2016, 48(3): 869-885. |
| 31 | DOI T, TAMURA K, TANABE Y, et al.. Phase 1 pharmacokinetic study of the oral pan-AKT inhibitor MK-2206 in Japanese patients with advanced solid tumors[J]. Cancer Chemother. Pharmacol., 2015, 76(2): 409-416. |
| 32 | HUDIS C, SWANTON C, JANJIGIAN Y Y, et al.. A phase 1 study evaluating the combination of an allosteric AKT inhibitor (MK-2206) and trastuzumab in patients with HER2-positive solid tumors[J/OL]. Breast Cancer Res., 2013, 15(6): R110[2025-02-26]. . |
| 33 | CHIEN A J, TRIPATHY D, ALBAIN K S, et al.. MK-2206 and standard neoadjuvant chemotherapy improves response in patients with human epidermal growth factor receptor 2-positive and/or hormone receptor-negative breast cancers in the I-SPY 2 trial[J]. J. Clin. Oncol., 2020, 38(10): 1059-1069. |
| 34 | SAURA C, RODA D, ROSELLÓ S, et al.. A first-in-human phase Ⅰ study of the ATP-competitive AKT inhibitor ipatasertib demonstrates robust and safe targeting of AKT in patients with solid tumors[J]. Cancer Discov., 2017, 7(1): 102-113. |
| 35 | SMYTH L M, TAMURA K, OLIVEIRA M, et al.. Capivasertib, an AKT kinase inhibitor, as monotherapy or in combination with fulvestrant in patients with AKT1 (E17K)-mutant, ER-positive metastatic breast cancer[J]. Clin. Cancer Res., 2020, 26(15): 3947-3957. |
| 36 | MADU C O, WANG S, MADU C O, et al.. Angiogenesis in breast cancer progression, diagnosis, and treatment[J]. J. Cancer, 2020, 11(15): 4474-4494. |
| 37 | SHAH A A, KAMAL M A, AKHTAR S. Tumor angiogenesis and VEGFR-2: mechanism, pathways and current biological therapeutic interventions[J]. Curr. Drug Metab., 2021, 22(1): 50-59. |
| 38 | MILLER K, WANG M, GRALOW J, et al.. Paclitaxel plus bevacizumab versus paclitaxel alone for metastatic breast cancer[J]. N. Engl. J. Med., 2007, 357(26): 2666-2676. |
| 39 | DENKERT C, LIEDTKE C, TUTT A, et al.. Molecular alterations in triple-negative breast cancer-the road to new treatment strategies[J]. Lancet, 2017, 389(10087): 2430-2442. |
| 40 | 薛雯,贾宇,江一帆,等.免疫检查点抑制剂在肿瘤治疗中的研究进展[J].生物技术进展,2019,9(4):341-349. |
| XUE W, JIA Y, JIANG Y F, et al.. Progress on immune checkpoint inhibitors in tumor therapy[J]. Curr. Biotechnol., 2019, 9(4): 341-349. | |
| 41 | SCHÜTZ F, STEFANOVIC S, MAYER L, et al.. PD-1/PD-L1 pathway in breast cancer[J]. Oncol. Res. Treat., 2017, 40(5): 294-297. |
| 42 | LI Y, MIAO W, HE D, et al.. Recent progress on immunotherapy for breast cancer: tumor microenvironment, nanotechnology and more[J/OL]. Front. Bioeng. Biotechnol., 2021, 9: 680315[2025-02-26]. . |
| 43 | DEBIEN V, DE CALUWÉ A, WANG X, et al.. Immunotherapy in breast cancer: an overview of current strategies and perspectives[J/OL]. NPJ Breast Cancer, 2023, 9(1): 7[2025-02-26]. . |
| 44 | MITTENDORF E A, PHILIPS A V, MERIC-BERNSTAM F, et al.. PD-L1 expression in triple-negative breast cancer[J]. Cancer Immunol. Res., 2014, 2(4): 361-370. |
| 45 | ISAACS C, NANDA R, CHIEN J, et al.. Abstract GS5-03: evaluation of anti-PD-1 cemiplimab plus anti-LAG-3 REGN3767 in early-stage, high-risk HER2-negative breast cancer: results from the neoadjuvant I-SPY 2 TRIAL[J/OL]. Cancer Res., 2023, 83(): GS5-3-GS5-03[2025-03-04].. |
| 46 | SCHMID P, ADAMS S, RUGO H S, et al.. Atezolizumab and nab-paclitaxel in advanced triple-negative breast cancer[J]. N. Engl. J. Med., 2018, 379(22): 2108-2121. |
| 47 | EMENS L A, ADAMS S, BARRIOS C H, et al.. First-line atezolizumab plus nab-paclitaxel for unresectable, locally advanced, or metastatic triple-negative breast cancer: IMpassion130 final overall survival analysis[J]. Ann. Oncol., 2021, 32(8): 983-993. |
| 48 | DOMCHEK S M, POSTEL-VINAY S, AIM S, et al.. Olaparib and durvalumab in patients with germline BRCA-mutated metastatic breast cancer (MEDIOLA): an open-label, multicentre, phase 1/2, basket study[J]. Lancet Oncol., 2020, 21(9): 1155-1164. |
| 49 | MCARTHUR H L, DIAB A, PAGE D B, et al.. A pilot study of preoperative single-dose ipilimumab and/or cryoablation in women with early-stage breast cancer with comprehensive immune profiling[J]. Clin. Cancer Res., 2016, 22(23): 5729-5737. |
| 50 | LOI S, FRANCIS P A, ZDENKOWSKI N, et al.. Neoadjuvant ipilimumab and nivolumab in combination with paclitaxel following anthracycline-based chemotherapy in patients with treatment resistant early-stage triple-negative breast cancer (TNBC): a single-arm phase 2 trial[J/OL]. J. Clin. Oncol., 2022, 40(): 602[2025-02-26]. . |
| 51 | 方超,黄卫人.合成生物学在肿瘤疫苗设计中的应用进展[J].合成生物学,2024,5(2):239-253. |
| FANG C, HUANG W R. Progress with the application of synthetic biology in designing of cancer vaccines[J]. Synth. Biol. J., 2024, 5(2): 239-253. | |
| 52 | CLIFTON G T, PEOPLES G E, MITTENDORF E A. The development and use of the E75 (HER2 369-377) peptide vaccine[J]. Future Oncol., 2016, 12(11): 1321-1329. |
| 53 | PEOPLES G E, GURNEY J M, HUEMAN M T, et al.. Clinical trial results of a HER2/neu (E75) vaccine to prevent recurrence in high-risk breast cancer patients[J]. J. Clin. Oncol., 2005, 23(30): 7536-7545. |
| 54 | ZHU S Y, YU K D. Breast cancer vaccines: disappointing or promising?[J/OL]. Front. Immunol., 2022, 13: 828386[2025-02-26]. . |
| 55 | ASSADIPOUR Y, ZACHARAKIS N, CRYSTAL J S, et al.. Characterization of an immunogenic mutation in a patient with metastatic triple-negative breast cancer[J]. Clin. Cancer Res., 2017, 23(15): 4347-4353. |
| 56 | ZACHARAKIS N, CHINNASAMY H, BLACK M, et al.. Immune recognition of somatic mutations leading to complete durable regression in metastatic breast cancer[J]. Nat. Med., 2018, 24(6): 724-730. |
| 57 | DEES S, GANESAN R, SINGH S, et al.. Emerging CAR-T cell therapy for the treatment of triple-negative breast cancer[J]. Mol. Cancer Ther., 2020, 19(12): 2409-2421. |
| 58 | NASIRI F, KAZEMI M, MIRAREFIN S M J, et al.. CAR-T cell therapy in triple-negative breast cancer: hunting the invisible devil[J/OL]. Front. Immunol., 2022, 13: 1018786[2025-02-26]. . |
| [1] | Xiaoyi ZHAI, Haiyue ZHANG, Wenjia GUO, Xiaogang DONG. Research Progress of Cancer-associated Fibroblasts in Breast Cancer [J]. Current Biotechnology, 2025, 15(4): 636-644. |
| [2] | Ziyi ZHANG-HUANG, Lisha HUANG, Yanqi LI, Chenlu XIONG, Ying YU, Fei XIE. Construction of a Breast Cancer Prognostic Model Based on Nicotine Metabolism Gene Signatures [J]. Current Biotechnology, 2025, 15(4): 735-742. |
| [3] | Yeerkenbieke BUERLAN, Lili SUN, Yuemaierabola ANWAIER, Wenjia GUO. Comprehensive Analysis of POSTN in ER+ Breast Cancer——Based on Single-cell RNA and Bulk RNA-seq Sequencing [J]. Current Biotechnology, 2024, 14(6): 1055-1066. |
| [4] | Yan ZENG, Hengcheng ZHU, Kang YANG. The Mechanism of DNASE1L3 in Renal Cell Carcinoma [J]. Current Biotechnology, 2024, 14(3): 486-491. |
| [5] | Weijian ZHAO, Hongting XU, Xiangqian XIAO, Wang SHENG. Research Progress on Hippo Signaling Pathway in Cancer Stem Cell [J]. Current Biotechnology, 2024, 14(2): 211-220. |
| [6] | Lili SUN, Yuemaierabola ANWAIER, Fuzhong LIU, Yeerkenbieke BUERLAN, Ye DILINAER, Wenjia GUO. Construction of Prognostic Prediction Model of Breast Cancer Based on Tumor-associated Fibroblast Genes and Analysis of Immune Infiltration [J]. Current Biotechnology, 2024, 14(2): 312-322. |
| [7] | Yuemaierabola ANWAIER, Yeerkenbieke BUERLAN, Lili SUN, Fuzhong LIU, Yeerxiati DILINAER, Wenjia GUO. Prognosis Prediction Model and Drug Sensitivity Analysis of Triple-negative Breast Cancer Based on m5C Related Genes [J]. Current Biotechnology, 2024, 14(1): 149-159. |
| [8] | Yonghong ZHANG, Yanyi LI, Ronglin LIU, Na LYU, Weiting ZHANG. Application of IgY in the Field Antiviral Medical [J]. Current Biotechnology, 2024, 14(1): 35-41. |
| [9] | Pengxiao ZHANG, Nian HU. The Research Progress on Action Mechanism of Melanoma Immunotherapy [J]. Current Biotechnology, 2023, 13(6): 900-906. |
| [10] | Linlin DU, Fei XIE, Xuemei MA. Pro-oncogenic Function and Therapeutic Significance of SALL4 [J]. Current Biotechnology, 2023, 13(5): 704-711. |
| [11] | Lang GAO, Sixue YU, Chunsen YUAN, Zhiwei SHAN, Pengxiang ZHAO. Research Progress of Mucin in Tumor Immunotherapy [J]. Current Biotechnology, 2023, 13(3): 390-398. |
| [12] | Cancan PENG, Huiming WANG. Establishment of Anti-glomerular Basement Membrane Nephritis Model Suitable for Immunotherapy in Rats [J]. Current Biotechnology, 2022, 12(3): 473-478. |
| [13] | Xin HU, Huici MA, Mingsheng HAN, Xiaohong YUAN, Mingyu YANG, Yanqin MA. Screening of Triple⁃negative Breast Cancer⁃associated miRNAs and Bioinfor⁃matics Analysis of the Target Genes [J]. Current Biotechnology, 2022, 12(2): 296-304. |
| [14] | Shuxiang LI, Liping AN, Dejuan LIANG, Kaixuan WANG, Jianguo ZHAO. Research Progress on the Treatment of Prion Disease [J]. Current Biotechnology, 2022, 12(2): 229-235. |
| [15] | Jinping XIAO, Cheng LI, Yundi CAO, Zhijian SUN, Ping KANG, Xiaomei LAN. Research Progress on the Relationship Between RET Protooncogene and Tumor [J]. Current Biotechnology, 2022, 12(1): 57-62. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||