Current Biotechnology ›› 2022, Vol. 12 ›› Issue (3): 325-331.DOI: 10.19586/j.2095-2341.2021.190
• Reviews • Previous Articles Next Articles
Jinrui FAN(
), Lei WANG, Junjie ZOU(
)
Received:2021-12-06
Accepted:2021-12-17
Online:2022-05-25
Published:2022-05-26
Contact:
Junjie ZOU
通讯作者:
邹俊杰
作者简介:樊锦瑞 E-mail:fanjinrui1997@163.com;
基金资助:CLC Number:
Jinrui FAN, Lei WANG, Junjie ZOU. Research Progress on PRNs Gene Family[J]. Current Biotechnology, 2022, 12(3): 325-331.
樊锦瑞, 王磊, 邹俊杰. PRNs基因家族研究进展[J]. 生物技术进展, 2022, 12(3): 325-331.
| 物种 | 基因名 | 生物学功能 | 文献来源 |
|---|---|---|---|
| 人类 | hPRN | 与Fe2+结合,具有槲皮素酶活性,可降解槲皮素 | [ |
| 参与吸烟引起的上皮细胞凋亡,表达受核因子Nrf2调节 | [1920] | ||
| 参与黑色素肿瘤细胞迁移,抑制黑素细胞衰老 | [2123] | ||
| 表达受miR⁃455⁃5p调节,下调后抑制前列腺癌细胞的迁移和侵袭 | [ | ||
| 通过激活E2F1及其靶基因刺激乳腺癌肿瘤的发生 | [ | ||
| 末期髓细胞成熟所必需,下调有助于急性髓系白血病相关的分化停滞 | [ | ||
| 参与真皮纤维化过程 | [ | ||
| 下调Eaf2/U19信号转导并延缓其对前列腺癌细胞的生长抑制作用 | [ | ||
| 作为Fe2+/Fe3+依赖的氧化还原感受器,氧化态结合核因子NF-κB,调控下游基因表达 | [2,2930] | ||
| 沙雷氏菌 | pirinSm | 与丙酮酸脱氢酶E1亚基互作调节丙酮酸脱氢酶活性,调节丙酮酸的分解代谢 | [ |
| 链霉菌 | pirA | 突变体对氧化损伤和聚酮化合物抗生素产生的抑制高度敏感,可催化β-氧化途径的第一步 | [ |
| 大肠杆菌 | YhhW | 具有槲皮素酶活性,可降解槲皮素,与Ni2+结合 | [ |
| 蓝藻 | prnA | 受盐、渗透等胁迫诱导上调 | [ |
| 斯氏假单胞菌 | pirin⁃like | 与Cu2+结合,具有槲皮素酶活性 | [ |
| 番茄 | LePirin | 参与细胞程序性死亡 | [ |
| 拟南芥 | AtPRN1 | 通过GCR1、GPA1、PRN1、NF-Y信号通路介导蓝光和脱落酸反应 | [ |
| 突变体对不同真菌敏感性不一样 | [ | ||
| 具有槲皮素酶活性,参与种子萌发时对光/暗响应 | [1617] | ||
| AtPRN2 | 稳定半胱氨酸蛋白酶XCP2,并增加对维管病原菌青枯雷尔氏菌的敏感性,突变体对该菌不敏感 | [ | |
| 抑制拟南芥木质部中的S型木质素积累 | [ |
Table 1 Biological functions of PRN proteins in different species
| 物种 | 基因名 | 生物学功能 | 文献来源 |
|---|---|---|---|
| 人类 | hPRN | 与Fe2+结合,具有槲皮素酶活性,可降解槲皮素 | [ |
| 参与吸烟引起的上皮细胞凋亡,表达受核因子Nrf2调节 | [1920] | ||
| 参与黑色素肿瘤细胞迁移,抑制黑素细胞衰老 | [2123] | ||
| 表达受miR⁃455⁃5p调节,下调后抑制前列腺癌细胞的迁移和侵袭 | [ | ||
| 通过激活E2F1及其靶基因刺激乳腺癌肿瘤的发生 | [ | ||
| 末期髓细胞成熟所必需,下调有助于急性髓系白血病相关的分化停滞 | [ | ||
| 参与真皮纤维化过程 | [ | ||
| 下调Eaf2/U19信号转导并延缓其对前列腺癌细胞的生长抑制作用 | [ | ||
| 作为Fe2+/Fe3+依赖的氧化还原感受器,氧化态结合核因子NF-κB,调控下游基因表达 | [2,2930] | ||
| 沙雷氏菌 | pirinSm | 与丙酮酸脱氢酶E1亚基互作调节丙酮酸脱氢酶活性,调节丙酮酸的分解代谢 | [ |
| 链霉菌 | pirA | 突变体对氧化损伤和聚酮化合物抗生素产生的抑制高度敏感,可催化β-氧化途径的第一步 | [ |
| 大肠杆菌 | YhhW | 具有槲皮素酶活性,可降解槲皮素,与Ni2+结合 | [ |
| 蓝藻 | prnA | 受盐、渗透等胁迫诱导上调 | [ |
| 斯氏假单胞菌 | pirin⁃like | 与Cu2+结合,具有槲皮素酶活性 | [ |
| 番茄 | LePirin | 参与细胞程序性死亡 | [ |
| 拟南芥 | AtPRN1 | 通过GCR1、GPA1、PRN1、NF-Y信号通路介导蓝光和脱落酸反应 | [ |
| 突变体对不同真菌敏感性不一样 | [ | ||
| 具有槲皮素酶活性,参与种子萌发时对光/暗响应 | [1617] | ||
| AtPRN2 | 稳定半胱氨酸蛋白酶XCP2,并增加对维管病原菌青枯雷尔氏菌的敏感性,突变体对该菌不敏感 | [ | |
| 抑制拟南芥木质部中的S型木质素积累 | [ |
| 1 | WENDLER W M F, KREMMER E, FÖRSTER R, et al.. Identification of Pirin, a novel highly conserved nuclear protein[J]. J. Biol. Chem., 1997, 272(13): 8482-8489. |
| 2 | LIU F, REHMANI I, ESAKI S, et al.. Pirin is an iron-dependent redox regulator of NF-κB[J]. Proc. Natl. Acad. Sci. USA, 2013, 110(24): 9722-9727. |
| 3 | LAPIK Y R, KAUFMAN L S. The Arabidopsis cupin domain protein AtPirin1 interacts with the G protein α-subunit GPA1 and regulates seed germination and early seedling development[J]. Plant Cell, 2003, 15(7): 1578-1590. |
| 4 | ADAMS M, JIA Z. Structural and biochemical analysis reveal pirins to possess quercetinase activity[J]. J. Biol. Chem., 2005, 280(31): 28675-28682. |
| 5 | SUNG B M, CARVALHO G G, WAIRICH A, et al.. Searching for novel transcriptional regulators of lignin deposition within the PIRIN family in the model C4 grass Setaria viridis [J]. Trop. Plant Biol., 2021, 14: 93-105. |
| 6 | DUNWELL J M. Cupins: a new superfamily of functionally diverse proteins that include germins and plant storage proteins[J]. Biotechnol. Genet. Eng. Rev., 1998, 15: 1-32. |
| 7 | KHURI S, BAKKER F T, DUNWELL J M. Phylogeny, function, and evolution of the cupins, a structurally conserved, functionally diverse superfamily of proteins[J]. Mol. Biol. Evol., 2001, 18(4): 593-605. |
| 8 | DUNWELL J M, CULHAM A, CARTER C E, et al.. Evolution of functional diversity in the cupin superfamily[J]. Trends Biochem. Sci., 2001, 26(12):740-746. |
| 9 | GUO B, ZHANG Y C, HICKS G, et al.. Structure-dependent modulation of substrate binding and biodegradation activity of pirin proteins toward plant flavonols[J]. Acs. Chem. Biol., 2019, 14(12): 2629-2640. |
| 10 | PANG H, BARTLAM M, ZENG Q H, et al.. Crystal structure of human pirin: an iron-binding nuclear protein and transcription cofactor[J]. J. Biol. Chem., 2004, 279(2): 1491-1498. |
| 11 | LIU H, ZHANG L, LU S. Evaluation of antioxidant and immunity activities of quercetin in isoproterenol-treated rats[J]. Molecules, 2012, 17(4): 4281-4291. |
| 12 | WIDIATNINGRUM T, MAEDA S, KATAOKA K, et al.. A Pirin-like protein from Pseudomonas stutzeri and its quercetinase activity[J]. Biochem. Biophys. Rep., 2015, 3: 144-149. |
| 13 | ZHANG B, SZTOJKA B, ESCAMEZ S, et al.. PIRIN2 suppresses S-type lignin accumulation in a noncell-autonomous manner in Arabidopsis xylem elements[J]. New Phytol., 2020, 225(5): 1923-1935. |
| 14 | WARPEHA K M, UPADHYAY S, YEH J, et al.. The GCR1, GPA1, PRN1, NF-Y signal chain mediates both blue light and abscisic acid responses in Arabidopsis[J]. Plant Physiol., 2007, 143(4): 1590-1600. |
| 15 | WARPEHA K M, PARK Y D, WILLIAMSON P R. Susceptibility of intact germinating Arabidopsis thaliana to human fungal pathogens Cryptococcus neoformans and C. gattii [J]. Appl. Environ. Microb., 2013, 79(9): 2979-2988. |
| 16 | OROZCO-NUNNELLY D A, MUHAMMAD D, MEZZICH R, et al.. Pirin1 (PRN1) is a multifunctional protein that regulates quercetin, and impacts specific light and UV responses in the seed-to-seedling transition of Arabidopsis thaliana [J/OL]. PLoS ONE, 2014, 9(4): e93371[2018-01-16]. . |
| 17 | OROZCO-NUNNELLY D A, MUHAMMAD D, LIAKAITE V, et al.. Pirin1 is a non-circadian regulated transcript and protein, but highly responsive to light/dark periods in the seed-to-seedling transition in Arabidopsis thaliana [J]. Plant Mol. Biol. Rep., 2015, 33(5): 1336-1348. |
| 18 | ZHANG B, TREMOUSAYGUE D, DENANCÉ N, et al.. PIRIN2 stabilizes cysteine protease XCP2 and increases susceptibility to the vascular pathogen Ralstonia solanacearum in Arabidopsis [J]. Plant J., 2014, 79(6): 1009-1019. |
| 19 | GELBMAN B D, HEGUY A, O'CONNOR T P, et al.. Upregulation of pirin expression by chronic cigarette smoking is associated with bronchial epithelial cell apoptosis[J/OL]. Resp. Res., 2007, 8(1):10 [2016-11-20]. . |
| 20 | HÜBNER R H, SCHWARTZ J D, DE B P, et al.. Coordinate control of expression of Nrf2-modulated genes in the human small airway epithelium is highly responsive to cigarette smoking[J]. Mol. Med., 2009, 15(7-8):203-219. |
| 21 | MIYAZAKI I, SIMIZU S, OSADA H. A small molecule inhibitor of pirin that suppresses tumor cell migration[J/OL]. Mol. Cancer Ther., 2009, 8(12): A166 [2016-11-20]. . |
| 22 | MIYAZAKI I, SIMIZU S, OKUMURA H, et al.. A small-molecule inhibitor shows that Pirin regulates migration of melanoma cells[J]. Nat. Chem. Biol., 2010, 6(9):667-673. |
| 23 | LICCIULLI S, LUISE C, SCAFETTA G, et al.. Pirin inhibits cellular senescence in melanocytic cells[J]. Am. J. Path., 2011, 178(5): 2397-2406. |
| 24 | ARAI T, KOJIMA S, YAMADA Y, et al.. Pirin: a potential novel therapeutic target for castration-resistant prostate cancer regulated by miR-455-5p [J]. Mol. Onco., 2019, 13(2): 322-337. |
| 25 | SULEMAN M, CHEN A, MA H, et al.. PIR promotes tumorigenesis of breast cancer by upregulating cell cycle activator E2F1[J]. Cell Cycle, 2019, 18(21): 2914-2927. |
| 26 | LICCIULLI S, CAMBIAGHI V, SCAFETTA G, et al.. Pirin downregulation is a feature of AML and leads to impairment of terminal myeloid differentiation[J]. Leukemia, 2010, 24(2): 429-437. |
| 27 | LISABETH E M, KAHL D, GOPALLAWA I, et al.. Identification of pirin as a molecular target of the CCG-1423/CCG-203971 series of antifibrotic and antimetastatic compounds[J]. ACS Pharmacol. Transl. Sci., 2019, 2(2): 92-100. |
| 28 | QIAO Z, WANG D, HAHN J, et al.. Pirin down-regulates the EAF2/U19 protein and alleviates its growth inhibition in prostate cancer cells[J]. Prostate, 2014, 74(2): 113-120. |
| 29 | BARMAN A, HAMELBERG D. Fe(Ⅱ)/Fe(Ⅲ) redox process can significantly modulate the conformational dynamics and electrostatics of pirin in NF-κB regulation[J]. Acs. Omega., 2016, 1(5): 837-842. |
| 30 | ADENIRAN C, HAMELBERG D. Redox-specific allosteric modulation of the conformational dynamics of κB DNA by pirin in the NF-κB supramolecular complex[J]. Biochemistry., 2017, 56(37):5002-5010. |
| 31 | SOO P C, HORNG Y T, LAI M J, et al.. Pirin regulates pyruvate catabolism by interacting with the pyruvate dehydrogenase E1 subunit and modulating pyruvate dehydrogenase activity[J]. J. Bacteriol., 2007, 189(1): 109-118. |
| 32 | TALÀ A, DAMIANO F, GALLO G, et al.. Pirin: A novel redox-sensitive modulator of primary and secondary metabolism in Streptomyces [J]. Metab. Eng., 2018, 48: 254-268. |
| 33 | HIHARA Y, MURAMATSU M, NAKAMURA K, et al.. A cyanobacterial gene encoding an ortholog of pirin is induced under stress conditions[J]. FEBS Lett., 2004, 574(1-3): 101-105. |
| 34 | ORZAEZ D, DE JONG A J, WOLTERING E J. A tomato homologue of the human protein PIRIN is induced during programmed cell death[J]. Plant Mol. Biol., 2001, 46(4): 459-468. |
| 35 | CARRILLO-BELTRÁN D, MUÑOZ J P, GUERRERO-VÁSQUEZ N, et al.. Human Papillomavirus 16 E7 EGFR/PIpromotes3K/AKT1/NRF2 signaling pathway contributing to PIR/NF-κB activation in oral cancer cells[J/OL]. Cancers (Basel), 2020, 12(7): 1904 [2020-10-22]. . |
| 36 | LICCIULLI S, LUISE C, ZANARDI A, et al.. Pirin delocalization in melanoma progression identified by high content immuno-detection based approaches[J/OL]. BMC Cell Biol., 2010, 11: 5 [2018-02-25]. . |
| 37 | NEZNANOV N, KONDRATOVA A, CHUMAKOV K M, et al.. Quercetinase pirin makes poliovirus replication resistant to flavonoid quercetin[J]. DNA Cell Biol., 2008, 27(4): 191-198. |
| 38 | KARIN M. NF-κB as a critical link between inflammation and cancer[J/OL]. Cold Spring Harb Perspect Biol., 2009, 1(5): a000141[2021-03-10]. . |
| 39 | LI Q, VERMA I M. NF-κB regulation in the immune system[J]. Nat. Rev. Immuno., 2002, 2(10):725-734. |
| 40 | CARRILLO D, MUNOZ J P, HUERTA H, et al.. Upregulation of PIR gene expression induced by human papillomavirus E 6 and E7 in epithelial oral and cervical cells[J/OL]. Open Biol., 2017, 7(11): 170111[2017-11-10]. . |
| 41 | BANDARANAYAKE P C, TOMILOV A, TOMILOVA N, et al.. The TvPirin gene is necessary for haustorium development in the parasitic plant Triphysaria versicolor [J]. Plant Physiol., 2011, 158: 1046-1053. |
| 42 | HASANUZZAMAN M, FOTOPOULOS V, NAHAR K, et al.. Reactive oxygen, nitrogen and sulfur species in plants: production, metabolism, signaling and defense mechanisms [M]//TALAAT N B. Role of reactive oxygen species signaling in plant growth and development. Chichester: John Wiley & Sons Ltd., 2019: 225-266. |
| 43 | PEREZ-DOMINGUEZ F, CARRILLO-BELTRÁN D, BLANCO R, et al.. Role of pirin, an oxidative stress sensor protein, in epithelial carcinogenesis[J/OL]. Biology (Basel), 2021, 10(2): 116[2021-02-10]. . |
| [1] | Yuqin BIAN, Keran DONG, Junzi LU, Enming ZHONG, Wanying GU, Jingshu ZHAO, Hongshu SUI. Clinical Progress in Targeted Therapy and Immunotherapy in Breast Cancer [J]. Current Biotechnology, 2025, 15(2): 234-240. |
| [2] | Weijian ZHAO, Hongting XU, Xiangqian XIAO, Wang SHENG. Research Progress on Hippo Signaling Pathway in Cancer Stem Cell [J]. Current Biotechnology, 2024, 14(2): 211-220. |
| [3] | Pengxiao ZHANG, Nian HU. The Research Progress on Action Mechanism of Melanoma Immunotherapy [J]. Current Biotechnology, 2023, 13(6): 900-906. |
| [4] | Linlin DU, Fei XIE, Xuemei MA. Pro-oncogenic Function and Therapeutic Significance of SALL4 [J]. Current Biotechnology, 2023, 13(5): 704-711. |
| [5] | Yuemaierabola ANWAIER, Lili SUN, Yeerkenbieke BUERLAN, Wenjia GUO. Advances on the Role of Piezo1 in Cancer [J]. Current Biotechnology, 2023, 13(5): 712-717. |
| [6] | Yi SONG, Siyu JIA, Lina WU, Wei ZHANG, Xiaojuan OU, Jian HUANG. Establishment and Application of NGS Method for Inherited Disorders of Hyperbilirubinemia and Cholestasis [J]. Current Biotechnology, 2022, 12(4): 591-599. |
| [7] | Yifan WU, Shenghao LIN, Wentao XU. Research Progress of Riboswitch Biosensors for Small Molecule Target [J]. Current Biotechnology, 2022, 12(2): 168-175. |
| [8] | Xin HU, Huici MA, Mingsheng HAN, Xiaohong YUAN, Mingyu YANG, Yanqin MA. Screening of Triple⁃negative Breast Cancer⁃associated miRNAs and Bioinfor⁃matics Analysis of the Target Genes [J]. Current Biotechnology, 2022, 12(2): 296-304. |
| [9] | Linlin WANG, Zhenliang SUN. Research Progress of Amino Acid Transporters in Tumor Metabolism [J]. Current Biotechnology, 2022, 12(1): 50-56. |
| [10] | Jinping XIAO, Cheng LI, Yundi CAO, Zhijian SUN, Ping KANG, Xiaomei LAN. Research Progress on the Relationship Between RET Protooncogene and Tumor [J]. Current Biotechnology, 2022, 12(1): 57-62. |
| [11] | Zihao GUO, Tiemin PEI, Desen LIANG, Fan YUAN. Progress on Correlation Between Insulin Growth Factor 2 mRNA Binding Protein 3 and Tumor [J]. Current Biotechnology, 2021, 11(6): 711-717. |
| [12] | ZHANG Wenying1,2§, WANG Siqing1§, ZHANG Xinyan, LI Qingwei1,2,3, LI Yingying1,2,3*. Research Progress of JAK2/STAT3 Served as a Novel Anticancer Drug Target [J]. Curr. Biotech., 2021, 11(1): 33-39. |
| [13] | HUANG Chunmeng1,2, ZHU Pengyu1, WANG Zhi1, WANG Chenguang1, DU Zhixin3, WEI Shuang4, ZHANG Yongjiang1, FU Wei1*. Regulatory Status and Challenges of RNAi-based Transgenic Plants in Breeding [J]. Curr. Biotech., 2020, 10(1): 10-14. |
| [14] | MA Xuan1, ZHANG Yangzi1, XU Wentao1,2*. Progress on Physicochemical Properties and Applications of Functional Nucleic Acid DNA Hydrogels [J]. Curr. Biotech., 2019, 9(6): 545-553. |
| [15] | YAN Dongke*, LYU Ping*. Progress on Hypoxia-inducible Factor and its Inhibitors [J]. Curr. Biotech., 2019, 9(4): 332-340. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||