| 1 | HSU P D, LANDER E S, ZHANG F. Development and applications of CRISPR-Cas9 for genome engineering[J]. Cell, 2014, 157(6):12621278. | 
																													
																							| 2 | KOMOR A C, KIM Y B, PACKER M S, et al.. Programmable editing of a target base in genomic DNA without doublestranded DNA cleavage[J]. Nature, 2016, 533(7603):420424. | 
																													
																							| 3 | REES H A, LIU D R. Base editing: precision chemistry on the genome and transcriptome of living cells[J]. Nat. Rev. Genet., 2018, 19(12): 770788 | 
																													
																							| 4 | ZONG Y, SONG Q, LI C, et al.. Efficient CtoT base editing in plants using a fusion of nCas9 and human APOBEC3A[J/OL]. Nat. Biotechnol, 2018, 36(10):950[2021-10-20]. . | 
																													
																							| 5 | SHIMATANI Z, KASHOJIYA S, TAKAYAMA M, et al.. Targeted base editing in rice and tomato using a CRISPRCas9 cytidine deaminase fusion[J]. Nat. Biotechnol, 2017, 35(5):441443. | 
																													
																							| 6 | QIN L, LI J, WANG Q, et al.. Highefficient and precise base editing of C*G to T*A in the allotetraploid cotton (Gossypium hirsutum) genome using a modified CRISPR/Cas9 system[J]. Plant Biotechnol. J., 2020, 18(1): 4556. | 
																													
																							| 7 | ZONG Y, WANG Y, LI C, et al.. Precise base editing in rice, wheat and maize with a Cas9cytidine deaminase fusion[J]. Nat. Biotechnol., 2017, 35(5): 438440. | 
																													
																							| 8 | FONFARA I, RICHTER H, BRATOVIC M, et al.. The CRISPRassociated DNAcleaving enzyme Cpf1 also processes precursor CRISPR RNA[J]. Nature, 2016, 532(7600): 517521. | 
																													
																							| 9 | JINEK M, CHYLINSKI K, FONFARA I, et al.. A programmable dualRNAguided DNA endonuclease in adaptive bacterial immunity[J]. Science, 2012, 337(6096): 816821. | 
																													
																							| 10 | ZETSCHE B, GOOTENBERG J S, ABUDAYYEH O O, et al.. Cpf1 is a single RNAguided endonuclease of a class 2 CRISPRCas system[J]. Cell, 2015, 163(3): 759771. | 
																													
																							| 11 | SWARTS D C, OOST J D, JINEK M. Structural basis for guide RNA processing and seeddependent DNA targeting by CRISPRCas12a[J]. Mol. Cell, 2017, 66(2): 221233. | 
																													
																							| 12 | KIM D, KIM J, HUR J K, et al.. Genomewide analysis reveals specificities of Cpf1 endonucleases in human cells[J]. Nat. Biotechnol., 2016, 34(8): 863868. | 
																													
																							| 13 | YAN W X, MIRZAZADEH R, GARNERONE S, et al.. BLISS is a versatile and quantitative method for genomewide profiling of DNA doublestrand breaks[J/OL]. Nat. Commun, 2017, 8:15058[2021-10-20]. . | 
																													
																							| 14 | LI X, WANG Y, LIU Y, et al.. Base editing with a Cpf1cytidine deaminase fusion[J]. Nat. Biotechnol., 2018, 36(4): 324327. | 
																													
																							| 15 | LI J, SUN Y, DU J, et al.. Generation of targeted point mutations in rice by a modified CRISPR/Cas9 system[J]. Mol. Plant, 2017, 10(3): 526529. | 
																													
																							| 16 | MA X, LIU Y G. CRISPR/Cas9based multiplex genome editing in monocot and dicot plants[J/OL]. Curr. Protoc. Mol. Biol., 2016, 115: 31.6.131.6.21[2021-10-20]. . | 
																													
																							| 17 | LI C, ZONG Y, WANG Y, et al.. Expanded base editing in rice and wheat using a Cas9adenosine deaminase fusion[J/OL]. Genome Biol., 2018, 19(1):59[2021-10-20]. . | 
																													
																							| 18 | SUN Y, ZHANG X, WU C, et al.. Engineering herbicideresistant rice plants through CRISPR/Cas9mediated homologous recombination of acetolactate synthase[J]. Mol. Plant, 2016, 9(4):628631. | 
																													
																							| 19 | KOMOR A C, ZHAO K T, PACKER M S, et al.. Improved base excision repair inhibition and bacteriophage Mu Gam protein yields C:GtoT:A base editors with higher efficiency and product purity[J/OL]. Sci. Adv., 2017, 3(8): eaao4774[2021-10-20]. . | 
																													
																							| 20 | ZHAO D, LI J, LI S, et al.. Glycosylase base editors enable CtoA and CtoG base changes[J]. Nat. Biotechnol., 2021, 39(1):3540. | 
																													
																							| 21 | MALZAHN A A, TANG X, LEE K, et al.. Application of CRISPRCas12a temperature sensitivity for improved genome editing in rice, maize, and Arabidopsis[J/OL]. BMC Biol., 2019, 17(1):9[2021-10-20]. . | 
																													
																							| 22 | LEE K, ZHANG Y, KLEINSTIVER B P, et al.. Activities and specificities of CRISPR/Cas9 and Cas12a nucleases for targeted mutagenesis in maize[J]. Plant Biotechnol J., 2019, 17(2): 362372. | 
																													
																							| 23 | ENDO A, MASAFUMI M, KAYA H, et al.. Efficient targeted mutagenesis of rice and tobacco genomes using Cpf1 from Francisella novicida[J/OL]. Sci. Rep., 2016, 6: 38169[2021-10-20]. . | 
																													
																							| 24 | ZHONG Z, ZHANG Y, YOU Q, et al.. Plant genome editing using FnCpf1 and LbCpf1 nucleases at redefined and altered PAM sites[J]. Mol. Plant, 2018, 11(7): 9991002. |