| 1 | YANG Y, GUO Y. Elucidating the molecular mechanisms mediating plant salt-stress responses[J]. New Phytol., 2018, 217(2): 523-539. | 
																													
																							| 2 | 阿提开姆·麦麦提,顾炜,于典司,等.基于隶属函数法的玉米种质资源苗期耐盐性评价[J].上海农业学报,2023,39(5):54-60. | 
																													
																							| 3 | 王继伟,赵成章,赵连春,等.内陆盐沼芦苇根系形态及生物量分配对土壤盐分因子的响应[J].生态学报,2018,38(13):4843-4851. | 
																													
																							|  | WANG J W, ZHAO C Z, ZHAO L C, et al.. Response of root morphology and biomass of Phragmites australis to soil salinity in inland salt marsh[J]. Acta Ecol. Sin., 2018, 38(13): 4843-4851. | 
																													
																							| 4 | BYRT C S, MUNNS R, BURTON R A, et al.. Root cell wall solutions for crop plants in saline soils[J]. Plant Sci., 2018, 269: 47-55. | 
																													
																							| 5 | CHOAT B, DRAYTON W M, BRODERSEN C, et al.. Measurement of vulnerability to water stress-induced cavitation in grapevine: a comparison of four techniques applied to a long-vesseled species[J]. Plant Cell Environ., 2010, 33(9): 1502-1512. | 
																													
																							| 6 | SELLAMI S, LE HIR R, THORPE M R, et al..  Arabidopsis natural accessions display adaptations in inflorescence growth and vascular anatomy to withstand high salinity during reproductive growth[J/OL]. Plants (basel switz.), 2019, 8(3): E61[2024-10-15]. . | 
																													
																							| 7 | HORIE T, KARAHARA I, KATSUHARA M. Salinity tolerance mechanisms in glycophytes: an overview with the central focus on rice plants[J/OL]. Rice, 2012, 5(1): 11[2024-10-15].. | 
																													
																							| 8 | YU J, ZAO W G, HE Q, et al.. Genome-wide association study and gene set analysis for understanding candidate genes involved in salt tolerance at the rice seedling stage[J]. Mol. Genet. Genom., 2017, 292(6): 1391-1403. | 
																													
																							| 9 | ANDERSON C T, KIEBER J J. Dynamic construction, perception, and remodeling of plant cell walls[J]. Annu. Rev. Plant Biol., 2020, 71: 39-69. | 
																													
																							| 10 | LIU J, ZHANG W, LONG S, et al.. Maintenance of cell wall integrity under high salinity[J/OL]. Int. J. Mol. Sci., 2021, 22(6): 3260[2024-10-15]. . | 
																													
																							| 11 | DABRAVOLSKI S A, ISAYENKOV S V. The regulation of plant cell wall organisation under salt stress[J/OL]. Front. Plant Sci., 2023, 14: 1118313[2024-10-15]. . | 
																													
																							| 12 | ZHANG B, GAO Y, ZHANG L, et al.. The plant cell wall: Biosynthesis, construction,and functions[J]. J. Integr. Plant Biol., 2021, 63(1):251-272. | 
																													
																							| 13 | LI H, YAN S H, ZHAO L, et al.. Histone acetylation associated up-regulation of the cell wall related genes is involved in salt stress induced maize root swelling[J/OL]. BMC Plant Biol., 2014, 14(1): 105[2024-11-15]. . | 
																													
																							| 14 | KESTEN C, GARCÍA-MORENO Á, AMORIM-SILVA V, et al.. Peripheral membrane proteins modulate stress tolerance by safeguarding cellulose synthases[J/OL]. Sci. Adv., 2022, 8(46): eabq6971[2024-10-15]. . | 
																													
																							| 15 | NAGASHIMA Y, MA Z, LIU X, et al.. Multiple quality control mechanisms in the ER and TGN determine subcellular dynamics and salt-stress tolerance function of KORRIGAN1[J]. Plant cell, 2020, 32(2): 470-485. | 
																													
																							| 16 | DEGENHARDT B, GIMMLER H. Cell wall adaptations to multiple environmental stresses in maize roots[J]. Arthritis Res.Ther., 2000, 51(344): 595-603. | 
																													
																							| 17 | QIN R D, HU Y M, CHEN H, et al.. MicroRNA408 negatively regulates salt tolerance by affecting secondary cell wall development in maize[J]. Plant Physiol., 2023, 192(2): 1569-1583. | 
																													
																							| 18 | VANHOLME R, DE MEESTER B, RALPH J, et al.. Lignin biosynthesis and its integration into metabolism[J]. Curr. Opin. Biotechnol., 2019, 56: 230-239. | 
																													
																							| 19 | GUO H, WANG Y, WANG L, et al.. Expression of the MYB transcription factor gene BplMYB46 affects abiotic stress tolerance and secondary cell wall deposition in Betula platyphylla [J]. Plant Biotechnol. J., 2017, 15(1): 107-121. | 
																													
																							| 20 | KONG Q S, MOSTAFA H H A, YANG W L, et al.. Comparative transcriptome profiling reveals that brassinosteroid-mediated lignification plays an important role in garlic adaption to salt stress[J]. Plant Physiol. Biochem., 2021, 158: 34-42. | 
																													
																							| 21 | WANG B B, LIN Z C, LI X, et al.. Genome-wide selection and genetic improvement during modern maize breeding[J]. Nat. Genet., 2020, 52: 565-571. | 
																													
																							| 22 | SILVA B R S, BATISTA B L, LOBATO A K S. Anatomical changes in stem and root of soybean plants submitted to salt stress[J]. Plant Biol. (stuttgart ger.), 2021, 23(1): 57-65. | 
																													
																							| 23 | ROGERS L A, DUBOS C, SURMAN C, et al.. Comparison of lignin deposition in three ectopic lignification mutants[J]. New Phytol., 2005, 168(1): 123-140. | 
																													
																							| 24 | VAN ZELM E, ZHANG Y, TESTERINK C. Salt tolerance mechanisms of plants[J]. Annu. Rev. Plant Biol., 2020, 71: 403-433. |