| [1] |
RATAJCZAK M, GAWEŁ D, GODLEWSKA M. Novel inhibitor-based therapies for thyroid cancer: an update[J/OL]. Int. J. Mol. Sci., 2021, 22(21): 11829[2025-05-04]. .
|
| [2] |
LYU Z, ZHANG Y, SHENG C, et al.. Global burden of thyroid cancer in 2022: incidence and mortality estimates from GLOBOCAN[J]. Chin. Med. J., 2024, 137(21): 2567-2576.
|
| [3] |
BOUCAI L, ZAFEREO M, CABANILLAS M E. Thyroid cancer: a review[J]. JAMA, 2024, 331(5): 425-435.
|
| [4] |
CHEN D W, LANG B H H, MCLEOD D S A, et al.. Thyroid cancer[J]. Lancet, 2023, 401(10387): 1531-1544.
|
| [5] |
BEHERA S A, NANDA B, ACHARY P G R. Recent advancements and challenges in 3D bioprinting for cancer applications[J/OL]. Bioprinting, 2024, 43: e00357[2025-05-04]. .
|
| [6] |
MA Z, WANG J, QIN L, et al.. 3D printing in biofabrication: from surface textures to biological engineering[J/OL]. Chem. Eng. J., 2024, 500: 156477[2025-05-04]. .
|
| [7] |
LI H, QIAO Y, DAI X, et al.. 3D bioprinting of tumor models and potential applications[J]. Bio. Des. Manuf., 2024, 7(6): 857-888.
|
| [8] |
YANG J, WANG L, WU R, et al.. 3D bioprinting in cancer modeling and biomedicine: from print categories to biological applications[J]. ACS Omega, 2024, 9(44): 44076-44100.
|
| [9] |
LOPEZ-VINCE E, SIMON-YARZA T, WILHELM C. A polysaccharide-based hydrogel platform for tumor spheroid production and anticancer drug screening[J/OL]. Sci. Rep., 2025, 15(1): 4213[2025-05-04]. .
|
| [10] |
ELOSEGUI-ARTOLA A, GUPTA A, NAJIBI A J, et al.. Matrix viscoelasticity controls spatiotemporal tissue organization[J]. Nat. Mater., 2023, 22(1): 117-127.
|
| [11] |
DEIDDA V, VENTISETTE I, LANGIONE M, et al.. 3D-printable gelatin methacrylate-xanthan gum hydrogel bioink enabling human induced pluripotent stem cell differentiation into cardiomyocytes[J/OL]. J. Funct. Biomater., 2024, 15(10): 297[2025-05-04]. .
|
| [12] |
RIANNA C, RADMACHER M. Comparison of viscoelastic properties of cancer and normal thyroid cells on different stiffness substrates[J]. Eur. Biophys. J., 2017, 46(4): 309-324.
|
| [13] |
KAFILI G, TAMJID E, SIMCHI A. The impact of mechanical tuning on the printability of decellularized amniotic membrane bioinks for cell-laden bioprinting of soft tissue constructs[J/OL]. Sci. Rep., 2024, 14(1): 29697[2025-05-04]. .
|
| [14] |
TUFTEE C, ALSBERG E, OZBOLAT I T, et al.. Emerging granular hydrogel bioinks to improve biological function in bioprinted constructs[J]. Trends Biotechnol., 2024, 42(3): 339-352.
|
| [15] |
KARVINEN J, KELLOMÄKI M. Design aspects and characterization of hydrogel-based bioinks for extrusion-based bioprinting[J/OL]. Bioprinting, 2023, 32: e00274[2025-05-04]. .
|
| [16] |
RAEES S, ULLAH F, JAVED F, et al.. Classification, processing, and applications of bioink and 3D bioprinting: a detailed review[J/OL]. Int. J. Biol. Macromol., 2023, 232: 123476[2025-05-04]. .
|
| [17] |
AKBARI M, KHADEMHOSSEINI A. Tissue bioprinting for biology and medicine[J]. Cell, 2022, 185(15): 2644-2648.
|
| [18] |
DING D, ZHU Y, BAI D, et al.. Monitoring and dynamically controlling glucose uptake rate and central metabolism[J]. Nat. Chem. Eng., 2025, 2(1): 50-62.
|
| [19] |
LIANG Y C, LI K, ZHAO X Q, et al.. Enhanced glucose utilization and succinic acid production in Corynebacterium glutamicum by integration of metabolic engineering and electro-fermentation[J/OL]. Chem. Eng. J., 2025, 505: 159522[2025-05-04]. .
|
| [20] |
SÁNCHEZ-SALAZAR M G, ÁLVAREZ M M, TRUJILLO-DE SANTIAGO G. Advances in 3D bioprinting for the biofabrication of tumor models[J/OL]. Bioprinting, 2021, 21: e00120[2025-05-04]. .
|
| [21] |
MAIQUES O, SALLAN M C, LADDACH R, et al.. Matrix mechano-sensing at the invasive front induces a cytoskeletal and transcriptional memory supporting metastasis[J/OL]. Nat. Commun., 2025, 16(1): 1394[2025-05-04]. .
|
| [22] |
RAMIREZ F D, JUNG R G, MOTAZEDIAN P, et al.. Journal initiatives to enhance preclinical research: analyses of stroke, nature medicine, science translational medicine[J]. Stroke, 2020, 51(1): 291-299.
|
| [23] |
YU J, ZHANG Y, RAN R, et al.. Research progress in the field of tumor model construction using bioprinting: a review[J]. Int. J. Nanomedicine, 2024, 19: 6547-6575.
|
| [24] |
JIANG W, GUAN B, SUN H, et al.. WNT11 promotes immune evasion and resistance to anti-PD-1 therapy in liver metastasis[J/OL]. Nat. Commun., 2025, 16(1): 1429[2025-05-04]. .
|
| [25] |
FANG M, ALLEN A, LUO C, et al.. Unlocking the potential of iPSC-derived immune cells: engineering iNK and iT cells for cutting-edge immunotherapy[J/OL]. Front. Immunol., 2024, 15: 1457629[2025-05-04]. .
|
| [26] |
ZHANG Z, CHEN X, GAO S, et al.. 3D bioprinted tumor model: a prompt and convenient platform for overcoming immunotherapy resistance by recapitulating the tumor microenvironment[J]. Cell. Oncol., 2024, 47(4): 1113-1126.
|
| [27] |
PARODI I, DI LISA D, PASTORINO L, et al.. 3D bioprinting as a powerful technique for recreating the tumor microenvironment[J/OL]. Gels, 2023, 9(6): 482[2025-05-04]. .
|
| [28] |
DAVOUDI F, GHORBANPOOR S, YODA S, et al.. Alginate-based 3D cancer cell culture for therapeutic response modeling[J/OL]. STAR Protoc., 2021, 2(2): 100391[2025-05-04]. .
|
| [29] |
XU X, WANG W, QIAO L, et al.. Ultra-high spatio-temporal resolution imaging with parallel acquisition-readout structured illumination microscopy (PAR-SIM)[J/OL]. Light Sci. Appl., 2024, 13(1): 125[2025-05-04]. .
|
| [30] |
TANG M, JIANG S, HUANG X, et al.. Integration of 3D bioprinting and multi-algorithm machine learning identified glioma susceptibilities and microenvironment characteristics[J/OL]. Cell Discov., 2024, 10(1): 39[2025-05-04]. .
|
| [31] |
AFFINITO O, ORLANDELLA F M, LUCIANO N, et al.. Evolution of intra-tumoral heterogeneity across different pathological stages in papillary thyroid carcinoma[J/OL]. Cancer Cell Int., 2022, 22(1): 263[2025-05-04]. .
|
| [32] |
KONG L, BHANDARI A, ZHANG X, et al.. Proto-oncogene RTL4 promotes tumorigenesis and invasiveness of papillary thyroid cancer[J]. Am. J. Transl. Res., 2020, 12(6): 3023-3032.
|
| [33] |
ASHRAFIZADEH M, NAJAFI M, ANG H L, et al.. PTEN, a barrier for proliferation and metastasis of gastric cancer cells: from molecular pathways to targeting and regulation[J/OL]. Biomedicines, 2020, 8(8): 264[2025-05-04]. .
|
| [34] |
MU P, ZHOU S, LYU T, et al.. Newly developed 3D in vitro models to study tumor-immune interaction[J/OL]. J. Exp. Clin. Cancer Res., 2023, 42(1): 81[2025-05-04]. .
|
| [35] |
XIA J, SHI Y, CHEN X. New insights into the mechanisms of the extracellular matrix and its therapeutic potential in anaplastic thyroid carcinoma[J/OL]. Sci. Rep., 2024, 14(1): 20977[2025-05-04]. .
|
| [36] |
YIN H, TANG Y, GUO Y, et al.. Immune microenvironment of thyroid cancer[J]. J. Cancer, 2020, 11(16): 4884-4896.
|
| [37] |
FONTANA F, RAIMONDI M, MARZAGALLI M, et al.. Three-dimensional cell cultures as an in vitro tool for prostate cancer modeling and drug discovery[J/OL]. Int. J. Mol. Sci., 2020, 21(18): 6806[2025-05-04]. .
|
| [38] |
OH J M, GANGADARAN P, RAJENDRAN R L, et al.. Different expression of thyroid-specific proteins in thyroid cancer cells between 2-dimensional (2D) and 3-dimensional (3D) culture environment[J/OL]. Cells, 2022, 11(22): 3559[2025-05-04]. .
|
| [39] |
DENARO N, ROMANÒ R, ALFIERI S, et al.. The tumor microenvironment and the estrogen loop in thyroid cancer[J/OL]. Cancers, 2023, 15(9): 2458[2025-05-04]. .
|
| [40] |
COLOMBO C, MINNA E, GARGIULI C, et al.. The molecular and gene/miRNA expression profiles of radioiodine resistant papillary thyroid cancer[J/OL]. J. Exp. Clin. Cancer Res., 2020, 39(1): 245[2025-05-04]. .
|