生物技术进展 ›› 2025, Vol. 15 ›› Issue (5): 828-838.DOI: 10.19586/j.2095-2341.2025.0084
收稿日期:2025-07-15
接受日期:2025-09-05
出版日期:2025-09-25
发布日期:2025-11-11
通讯作者:
朱艳华
作者简介:李海芳 E-mail: 270276145@qq.com;
Received:2025-07-15
Accepted:2025-09-05
Online:2025-09-25
Published:2025-11-11
Contact:
Yanhua ZHU
摘要:
慢性肾脏病(chronic kidney disease, CKD)患者常发生血管钙化(vascular calcification, VC),这是导致其心血管疾病(cardiovascular disease,CVD)高发的主要原因。血管平滑肌细胞(vascular smooth muscle cells, VSMC)向成骨样细胞的转分化是VC的核心环节,受高磷血症、炎症及尿毒症毒素等复杂因素调控,但其精确分子机制尚不明确。综述了CKD背景下VC的病理机制,重点探讨了VSMC成骨样表型转化等VC的核心机制。血管钙化的发生发展受到表观遗传、细胞应激、细胞衰老等多层次的调控,这些改变相互影响,共同构成了血管钙化进展的关键驱动因素。深入阐明VSMC表型转化的分子机制,不仅可为CKD相关VC提供精准治疗靶点,还能为开发新型干预手段奠定理论基础,最终改善患者心血管疾病预后和生存质量。
中图分类号:
李海芳, 朱艳华. 慢性肾脏病患者血管钙化的机制研究[J]. 生物技术进展, 2025, 15(5): 828-838.
Haifang LI, Yanhua ZHU. Mechanistic Insights into Vascular Calcification in Chronic Kidney Disease Patients[J]. Current Biotechnology, 2025, 15(5): 828-838.
| [1] | JIANG Y, TUAN R S. Role of NGF-TrkA signaling in calcification of articular chondrocytes[J]. FASEB J., 2019, 33(9): 10231-10239. |
| [2] | SARNAK M J, AMANN K, BANGALORE S, et al.. Chronic kidney disease and coronary artery disease: JACC state-of-the-art review[J]. J. Am. Coll. Cardiol., 2019, 74(14): 1823-1838. |
| [3] | THOMAS B, MATSUSHITA K, ABATE K H, et al.. Global cardiovascular and renal outcomes of reduced GFR[J]. J. Am. Soc. Nephrol., 2017, 28(7): 2167-2179. |
| [4] | LU Y, MENG L, REN R, et al.. Paraspeckle protein NONO attenuates vascular calcification by inhibiting bone morphogenetic protein 2 transcription[J]. Kidney Int., 2024, 105(6): 1221-1238. |
| [5] | LANZER P, BOEHM M, SORRIBAS V, et al.. Medial vascular calcification revisited: review and perspectives[J]. Eur. Heart J., 2014, 35(23): 1515-1525. |
| [6] | 方学升,包明威.骨膜蛋白在心血管疾病中的研究进展[J].生物技术进展,2023,13(5):725-729. |
| FANG X S, BAO M W. Research advances of POSTN in cardiovascular diseases[J]. Curr. Biotechnol., 2023, 13(5): 725-729. | |
| [7] | SHANAHAN C M. Mechanisms of vascular calcification in CKD-evidence for premature ageing?[J]. Nat. Rev. Nephrol., 2013, 9(11): 661-670. |
| [8] | RAGGI P. Cardiovascular disease: coronary artery calcification predicts risk of CVD in patients with CKD[J]. Nat. Rev. Nephrol., 2017, 13(6): 324-326. |
| [9] | LACOLLEY P, REGNAULT V, NICOLETTI A, et al.. The vascular smooth muscle cell in arterial pathology: a cell that can take on multiple roles[J]. Cardiovasc. Res., 2012, 95(2): 194-204. |
| [10] | CHEN Y, ZHAO X, WU H. Transcriptional programming in arteriosclerotic disease: a multifaceted function of the Runx2 (runt-related transcription factor 2)[J]. Arterioscler. Thromb. Vasc. Biol., 2021, 41(1): 20-34. |
| [11] | CHAVKIN N W, CHIA J J, CROUTHAMEL M H, et al.. Phosphate uptake-independent signaling functions of the type Ⅲ sodium-dependent phosphate transporter, PiT-1, in vascular smooth muscle cells[J]. Exp. Cell Res., 2015, 333(1): 39-48. |
| [12] | VOELKL J, LANG F, UECKARDT K, et al.. Signaling pathways involved in vascular smooth muscle cell calcification during hyperphosphatemia[J]. Cell. Mol. Life Sci., 2019, 76(11): 2077-2091. |
| [13] | JOHNSON R C, LEOPOLD J A, LOSCALZO J. Vascular calcification: pathobiological mechanisms and clinical implications[J]. Circ. Res., 2006, 99(10): 1044-1059. |
| [14] | GOETTSCH C, HUTCHESON J D, AIKAWA M, et al.. Sortilin mediates vascular calcification via its recruitment into extracellular vesicles[J]. J. Clin. Invest., 2016, 126(4): 1323-1336. |
| [15] | ZHANG X, LI Y, YANG P, et al.. Trimethylamine-N-oxide promotes vascular calcification through activation of NLRP3 (nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3) inflammasome and NF-κB (nuclear factor κB) signals[J]. Arterioscler. Thromb. Vasc. Biol., 2020, 40(3): 751-765. |
| [16] | KANG J H, KAWANO T, MURATA M, et al.. Vascular calcification and cellular signaling pathways as potential therapeutic targets[J/OL]. Life Sci., 2024, 336: 122309[2025-07-15]. . |
| [17] | BEAZLEY K E, NURMINSKY D, LIMA F, et al.. Wnt16 attenuates TGFβ-induced chondrogenic transformation in vascular smooth muscle[J]. Arterioscler. Thromb. Vasc. Biol., 2015, 35(3): 573-579. |
| [18] | LIBERMAN M, JOHNSON R C, HANDY D E, et al.. Bone morphogenetic protein-2 activates NADPH oxidase to increase endoplasmic reticulum stress and human coronary artery smooth muscle cell calcification[J]. Biochem. Biophys. Res. Commun., 2011, 413(3): 436-441. |
| [19] | KIM W J, SHIN H L, KIM B S, et al.. RUNX2-modifying enzymes: therapeutic targets for bone diseases[J]. Exp. Mol. Med., 2020, 52(8): 1178-1184. |
| [20] | ZHONG H, YU H, CHEN J, et al.. The short-chain fatty acid butyrate accelerates vascular calcification via regulation of histone deacetylases and NF-κB signaling[J/OL]. Vascul. Pharmacol., 2022, 146: 107096[2025-07-15]. . |
| [21] | LIN M E, CHEN T, LEAF E M, et al.. Runx2 expression in smooth muscle cells is required for arterial medial calcification in mice[J]. Am. J. Pathol., 2015, 185(7): 1958-1969. |
| [22] | LINO M, WAN M H, ROCCA A S, et al.. Diabetic vascular calcification mediated by the collagen receptor discoidin domain receptor 1 via the phosphoinositide 3-kinase/Akt/runt-related transcription factor 2 signaling axis[J]. Arterioscler. Thromb. Vasc. Biol., 2018, 38(8): 1878-1889. |
| [23] | ZHU Y, MA W Q, HAN X Q, et al.. Advanced glycation end products accelerate calcification in VSMCs through HIF-1α/PDK4 activation and suppress glucose metabolism[J/OL]. Sci. Rep., 2018, 8: 13730[2025-07-15]. . |
| [24] | DURHAM A L, SPEER M Y, SCATENA M, et al.. Role of smooth muscle cells in vascular calcification: implications in atherosclerosis and arterial stiffness[J]. Cardiovasc. Res., 2018, 114(4): 590-600. |
| [25] | OPDEBEECK B, MAUDSLEY S, AZMI A, et al.. Indoxyl sulfate and p-cresyl sulfate promote vascular calcification and associate with glucose intolerance[J]. J. Am. Soc. Nephrol., 2019, 30(5): 751-766. |
| [26] | SHI J, YANG Y, WANG Y N, et al.. Oxidative phosphorylation promotes vascular calcification in chronic kidney disease[J/OL]. Cell Death Dis., 2022, 13(3): 229[2025-07-15]. . |
| [27] | LEE S J, LEE I K, HJEON J. Vascular calcification-new insights into its mechanism[J/OL]. Int. J. Mol. Sci., 2020, 21(8): 2685[2025-07-15]. . |
| [28] | ZHANG Z, WANG X, HUANG C, et al.. Size-dependent interactions between calciprotein particles and vascular endothelium[J/OL]. Mater. Today Bio., 2025, 31: 101599[2025-07-15]. . |
| [29] | ZHOU Z, DONG B, HE D, et al.. GLS1-mediated redundancy in glutamate accelerates arterial calcification via activating NMDAR/Ca(2+)/β-catenin pathway[J/OL]. Adv. Sci., 2025, 12(21): e2414252[2025-07-15]. . |
| [30] | LAN Z, LIANG Q, LI L, et al.. TRIM16 mediates K63-linked ubiquitination of DAB2 to facilitate vascular calcification[J]. Circ. Res., 2025, 137(4): 551-568. |
| [31] | LI Y, JIE W, QI Y, et al.. Inhibition of RIPK1 alleviating vascular smooth muscle cells osteogenic transdifferentiation via Runx2[J/OL]. iScience, 2024, 27(2): 108766[2025-07-15]. . |
| [32] | LI W, FENG W, SU X, et al.. SIRT6 protects vascular smooth muscle cells from osteogenic transdifferentiation via Runx2 in chronic kidney disease[J/OL]. J. Clin. Invest., 2022, 132(1): e150051[2025-07-15]. . |
| [33] | HU C T, SHAO Y D, LIU Y Z, et al.. Oxidative stress in vascular calcification[J]. Clin. Chim. Acta, 2021, 519: 101-110. |
| [34] | ZHOU S, FANG X, XIN H, et al.. Osteoprotegerin inhibits calcification of vascular smooth muscle cell via down regulation of the Notch1-RBP-Jκ/Msx2 signaling pathway[J/OL]. PLoS ONE, 2013, 8(7): e68987[2025-07-15]. . |
| [35] | WANG Y, XIAO M, CAI F, et al.. Roxadustat ameliorates vascular calcification in CKD rats by regulating HIF-2α/HIF-1α[J]. Environ. Toxicol., 2024, 39(4): 2363-2373. |
| [36] | SPEER M Y, YANG H Y, BRABB T, et al.. Smooth muscle cells give rise to osteochondrogenic precursors and chondrocytes in calcifying arteries[J]. Circ. Res., 2009, 104(6): 733-741. |
| [37] | LUO G, DUCY P, MCKEE M D, et al.. Spontaneous calcification of arteries and cartilage in mice lacking matrix GLA protein[J]. Nature, 1997, 386(6620): 78-81. |
| [38] | REYNOLDS J L, JOANNIDES A J, SKEPPER J N, et al.. Human vascular smooth muscle cells undergo vesicle-mediated calcification in response to changes in extracellular calcium and phosphate concentrations: a potential mechanism for accelerated vascular calcification in ESRD[J]. J. Am. Soc. Nephrol., 2004, 15(11): 2857-2867. |
| [39] | KAPUSTIN A N, DAVIES J D, REYNOLDS J L, et al.. Calcium regulates key components of vascular smooth muscle cell-derived matrix vesicles to enhance mineralization[J]. Circ. Res., 2011, 109(1): 1-12. |
| [40] | YAO Y, BENNETT B J, WANG X, et al.. Inhibition of bone morphogenetic proteins protects against atherosclerosis and vascular calcification[J]. Circ. Res., 2010, 107(4): 485-494. |
| [41] | WESTENFELD R, KRUEGER T, SCHLIEPER G, et al.. Effect of vitamin K2 supplementation on functional vitamin K deficiency in hemodialysis patients: a randomized trial[J]. Am. J. Kidney Dis., 2012, 59(2): 186-195. |
| [42] | KETTELER M, BONGARTZ P, WESTENFELD R, et al.. Association of low fetuin-A (AHSG) concentrations in serum with cardiovascular mortality in patients on dialysis: a cross-sectional study[J]. Lancet, 2003, 361(9360): 827-833. |
| [43] | FUSARO M, NOALE M, VIOLA V, et al.. Vitamin K, vertebral fractures, vascular calcifications, and mortality: VItamin K Italian (VIKI) dialysis study[J]. J. Bone Miner. Res., 2012, 27(11): 2271-2278. |
| [44] | DE LA PUENTE-SECADES S, MIKOLAJETZ D, GAYRARD N, et al.. Vasoconstriction-inhibiting factor: an endogenous inhibitor of vascular calcification as a calcimimetic of calcium-sensing receptor[J]. Cardiovasc. Res., 2025, 121(3): 507-521. |
| [45] | AZPIAZU D, GONZALO S, GONZÁLEZ-PARRA E, et al.. Role of pyrophosphate in vascular calcification in chronic kidney disease[J]. Nefrologia, 2018, 38(3): 250-257. |
| [46] | FISH R S, KLOOTWIJK E, TAM F W K, et al.. ATP and arterial calcification[J]. Eur. J. Clin. Invest., 2013, 43(4): 405-412. |
| [47] | LOMASHVILI K A, GARG P, NARISAWA S, et al.. Upregulation of alkaline phosphatase and pyrophosphate hydrolysis: potential mechanism for uremic vascular calcification[J]. Kidney Int., 2008, 73(9): 1024-1030. |
| [48] | LENCEL P, DELPLACE S, PILET P, et al.. Cell-specific effects of TNF-α and IL-1β on alkaline phosphatase: implication for syndesmophyte formation and vascular calcification[J]. Lab. Invest., 2011, 91(10): 1434-1442. |
| [49] | ZEBBOUDJ A F, SHIN V, BOSTRÖM K. Matrix GLA protein and BMP-2 regulate osteoinduction in calcifying vascular cells[J]. J. Cell. Biochem., 2003, 90(4): 756-765. |
| [50] | WESTENFELD R, SCHÄFER C, KRÜGER T, et al.. Fetuin-a protects against atherosclerotic calcification in CKD[J]. J. Am. Soc. Nephrol., 2009, 20(6): 1264-1274. |
| [51] | FEENSTRA L, REIJRINK M, PASCH A, et al.. Calciprotein particle counts associate with vascular remodelling in chronic kidney disease[J]. Cardiovasc. Res., 2024, 120(15): 1953-1966. |
| [52] | REYNOLDS J L, SKEPPER J N, MCNAIR R, et al.. Multifunctional roles for serum protein fetuin-a in inhibition of human vascular smooth muscle cell calcification[J]. J. Am. Soc. Nephrol., 2005, 16(10): 2920-2930. |
| [53] | HERMANS M M H, BRANDENBURG V, KETTELER M, et al.. Association of serum fetuin-a levels with mortality in dialysis patients[J]. Kidney Int., 2007, 72(2): 202-207. |
| [54] | HAMANO T, MATSUI I, MIKAMI S, et al.. Fetuin-mineral complex reflects extraosseous calcification stress in CKD[J]. J. Am. Soc. Nephrol., 2010, 21(11): 1998-2007. |
| [55] | HU B, WANG Y, YU L, et al.. Biomimetic wrinkled prebiotic microspheres with enhanced intestinal retention for hyperphosphatemia and vascular calcification[J/OL]. Sci. Adv., 2025, 11(3): eads5286[2025-07-15]. . |
| [56] | ZHANG D, ZHU Y, LI H, et al.. Associations of whole blood zinc levels with coronary artery calcification and future cardiovascular events in CKD patients[J]. Biol. Trace Elem. Res., 2024, 202(1): 46-55. |
| [57] | LOUVET L, BÜCHEL J, STEPPAN S, et al.. Magnesium prevents phosphate-induced calcification in human aortic vascular smooth muscle cells[J]. Nephrol. Dial. Transplant., 2013, 28(4): 869-878. |
| [58] | SALEM S, BRUCK H, BAHLMANN F H, et al.. Relationship between magnesium and clinical biomarkers on inhibition of vascular calcification[J]. Am. J. Nephrol., 2012, 35(1): 31-39. |
| [59] | LANZER P, SCHURGERS L, TWARDA-CLAPA A, et al.. Medial arterial calcification in ageing and disease: current evidence and knowledge gaps[J/OL]. Eur. Heart J., 2025: ehaf341[2025-07-15]. . |
| [60] | SHROFF R C, MCNAIR R, FIGG N, et al.. Dialysis accelerates medial vascular calcification in part by triggering smooth muscle cell apoptosis[J]. Circulation, 2008, 118(17): 1748-1757. |
| [61] | SCHLIEPER G, ARETZ A, VERBERCKMOES S C, et al.. Ultrastructural analysis of vascular calcifications in uremia[J]. J. Am. Soc. Nephrol., 2010, 21(4): 689-696. |
| [62] | KAPUSTIN A N, SHANAHAN C M. Calcium regulation of vascular smooth muscle cell-derived matrix vesicles[J]. Trends Cardiovasc. Med., 2012, 22(5): 133-137. |
| [63] | 刘昊, 李响. 冠状动脉疾病发病机制及治疗策略研究进展[J]. 生物技术进展, 2025, 15(2): 254-262. |
| LIU H, LI X. Research progress on pathogenic mechanisms and treatment strategy of coronary artery disease[J]. Curr. Biotech., 2025, 15(2): 254-262. | |
| [64] | BONASIO R, TU S, REINBERG D. Molecular signals of epigenetic states[J]. Science, 2010, 330(6004): 612-616. |
| [65] | LAUKKANEN M O, MANNERMAA S, HILTUNEN M O, et al.. Local hypomethylation in atherosclerosis found in rabbit ec-sod gene[J]. Arterioscler. Thromb. Vasc. Biol., 1999, 19(9): 2171-2178. |
| [66] | MCDONALD O G, WAMHOFF B R, HOOFNAGLE M H, et al.. Control of SRF binding to CArG box chromatin regulates smooth muscle gene expression in vivo [J]. J. Clin. Invest., 2006, 116(1): 36-48. |
| [67] | ZHAI X, CAO S, WANG J, et al.. Carbonylation of Runx2 at K176 by 4-hydroxynonenal accelerates vascular calcification[J]. Circulation, 2024, 149(22): 1752-1769. |
| [68] | ALBINSSON S, SUAREZ Y, SKOURA A, et al.. microRNAs are necessary for vascular smooth muscle growth, differentiation, and function[J]. Arterioscler. Thromb. Vasc. Biol., 2010, 30(6): 1118-1126. |
| [69] | JONES P A, TAKAI D. The role of DNA methylation in mammalian epigenetics[J]. Science, 2001, 293(5532): 1068-1070. |
| [70] | LIU R, JIN Y, TANG W H, et al.. Ten-eleven translocation-2 (TET2) is a master regulator of smooth muscle cell plasticity[J]. Circulation, 2013, 128(18): 2047-2057. |
| [71] | ZHUANG J, LUAN P, LI H, et al.. The Yin-Yang dynamics of DNA methylation is the key regulator for smooth muscle cell phenotype switch and vascular remodeling[J]. Arterioscler. Thromb. Vasc. Biol., 2017, 37(1): 84-97. |
| [72] | HILTUNEN M O, TURUNEN M P, HÄKKINEN T P, et al.. DNA hypomethylation and methyltransferase expression in atherosclerotic lesions[J]. Vasc. Med., 2002, 7(1): 5-11. |
| [73] | JIANG J X, AITKEN K J, SOTIROPOULOS C, et al.. Phenotypic switching induced by damaged matrix is associated with DNA methyltransferase 3A (DNMT3A) activity and nuclear localization in smooth muscle cells (SMC)[J/OL]. PLoS ONE, 2013, 8(8): e69089[2025-07-15]. . |
| [74] | ROZENBERG J M, TESFU D B, MUSUNURI S, et al.. DNA methylation of a GC repressor element in the smooth muscle myosin heavy chain promoter facilitates binding of the Notch-associated transcription factor, RBPJ/CSL1[J]. Arterioscler. Thromb. Vasc. Biol., 2014, 34(12): 2624-2631. |
| [75] | NING Y, HUANG H, DONG Y, et al.. 5-Aza-2'-deoxycytidine inhibited PDGF-induced rat airway smooth muscle cell phenotypic switching[J]. Arch. Toxicol., 2013, 87(5): 871-881. |
| [76] | AZECHI T, SATO F, SUDO R, et al.. 5-aza-2'-Deoxycytidine, a DNA methyltransferase inhibitor, facilitates the inorganic phosphorus-induced mineralization of vascular smooth muscle cells[J]. J. Atheroscler. Thromb., 2014, 21(5): 463-476. |
| [77] | QIU P, LI L. Histone acetylation and recruitment of serum responsive factor and CREB-binding protein onto SM22 promoter during SM22 gene expression[J]. Circ. Res., 2002, 90(8): 858-865. |
| [78] | KEE H J, SKWON J, SHIN S, et al.. Trichostatin A prevents neointimal hyperplasia via activation of Krüppel like factor 4[J]. Vascul. Pharmacol., 2011, 55(5-6): 127-134. |
| [79] | QIU P, RITCHIE R P, GONG X Q, et al.. Dynamic changes in chromatin acetylation and the expression of histone acetyltransferases and histone deacetylases regulate the SM22alpha transcription in response to Smad3-mediated TGFbeta1 signaling[J]. Biochem. Biophys. Res. Commun., 2006, 348(2): 351-358. |
| [80] | BYON C H, JAVED A, DAI Q, et al.. Oxidative stress induces vascular calcification through modulation of the osteogenic transcription factor Runx2 by AKT signaling[J]. J. Biol. Chem., 2008, 283(22): 15319-15327. |
| [81] | WILLEMS B A, FURMANIK M, CARON M M J, et al.. Ucma/GRP inhibits phosphate-induced vascular smooth muscle cell calcification via SMAD-dependent BMP signalling[J/OL]. Sci. Rep., 2018, 8(1): 4961[2025-07-15]. . |
| [82] | TURNER M E, ROWSELL T S, LANSING A P, et al.. Vascular calcification maladaptively participates in acute phosphate homeostasis[J]. Cardiovasc. Res., 2023, 119(4): 1077-1091. |
| [83] | EL-ABBADI M M, PAI A S, LEAF E M, et al.. Phosphate feeding induces arterial medial calcification in uremic mice: role of serum phosphorus, fibroblast growth factor-23, and osteopontin[J]. Kidney Int., 2009, 75(12): 1297-1307. |
| [84] | ZHANG K, ZHANG Y, FENG W, et al.. Interleukin-18 enhances vascular calcification and osteogenic differentiation of vascular smooth muscle cells through TRPM7 activation[J]. Arterioscler. Thromb. Vasc. Biol., 2017, 37(10): 1933-1943. |
| [85] | GLANCY B, BALABAN R S. Role of mitochondrial Ca2+ in the regulation of cellular energetics[J]. Biochemistry, 2012, 51(14): 2959-2973. |
| [86] | 潘舟,胡克.线粒体功能障碍在缺氧性肺动脉高压中的作用[J].生物技术进展,2023,13(6):882-888. |
| PAN Z, HU K. The role of mitochondrial dysfunction in hypoxic pulmonary hypertension[J]. Curr. Biotechnol., 2023, 13(6): 882-888. | |
| [87] | IZZO V, BRAVO-SAN P J M, SICA V, et al.. Mitochondrial permeability transition: new findings and persisting uncertainties[J]. Trends Cell Biol., 2016, 26(9): 655-667. |
| [88] | BAI Y, ZHANG J, XU J, et al.. Magnesium prevents β-glycerophosphate-induced calcification in rat aortic vascular smooth muscle cells[J]. Biomed. Rep., 2015, 3(4): 593-597. |
| [89] | MA W Q, SUN X J, WANG Y, et al.. Restoring mitochondrial biogenesis with metformin attenuates β-GP-induced phenotypic transformation of VSMCs into an osteogenic phenotype via inhibition of PDK4/oxidative stress-mediated apoptosis[J]. Mol. Cell. Endocrinol., 2019, 479: 39-53. |
| [90] | ZHU Y, JI J J, YANG R, et al.. Lactate accelerates calcification in VSMCs through suppression of BNIP3-mediated mitophagy[J]. Cell. Signal., 2019, 58: 53-64. |
| [91] | GIACHELLI C M. The emerging role of phosphate in vascular calcification[J]. Kidney Int., 2009, 75(9): 890-897. |
| [92] | HSU Y J, HSU S C, HUANG S M, et al.. Hyperphosphatemia induces protective autophagy in endothelial cells through the inhibition of Akt/mTOR signaling[J]. J. Vasc. Surg., 2015, 62(1): 210-221. |
| [93] | DAI X Y, ZHAO M M, CAI Y, et al.. Phosphate-induced autophagy counteracts vascular calcification by reducing matrix vesicle release[J]. Kidney Int., 2013, 83(6): 1042-1051. |
| [94] | FRAUSCHER B, KIRSCH A H, SCHABHÜTTL C, et al.. Autophagy protects from uremic vascular media calcification[J/OL]. Front. Immunol., 2018, 9: 1866[2025-07-15]. . |
| [95] | BRAAKMAN I, HEBERT D N. Protein folding in the endoplasmic reticulum[J/OL]. Cold Spring Harb. Perspect. Biol., 2013, 5(5): a013201[2025-07-15]. . |
| [96] | RAO R V, BREDESEN D E. Misfolded proteins, endoplasmic reticulum stress and neurodegeneration[J]. Curr. Opin. Cell Biol., 2004, 16(6): 653-662. |
| [97] | DUAN X, ZHOU Y, TENG X, et al.. Endoplasmic reticulum stress-mediated apoptosis is activated in vascular calcification[J]. Biochem. Biophys. Res. Commun., 2009, 387(4): 694-699. |
| [98] | DUAN X H, CHANG J R, ZHANG J, et al.. Activating transcription factor 4 is involved in endoplasmic reticulum stress-mediated apoptosis contributing to vascular calcification[J]. Apoptosis, 2013, 18(9): 1132-1144. |
| [99] | MASUDA M, MIYAZAKI-ANZAI S, LEVI M, et al.. PERK-eIF2α-ATF4-CHOP signaling contributes to TNFα-induced vascular calcification[J/OL]. J. Am. Heart Assoc., 2013, 2(5): e000238[2025-07-15]. . |
| [100] | MIYAZAKI-ANZAI S, MASUDA M, DEMOS-DAVIES K M, et al.. Endoplasmic reticulum stress effector CCAAT/enhancer-binding protein homologous protein (CHOP) regulates chronic kidney disease-induced vascular calcification[J/OL]. J. Am. Heart Assoc., 2014, 3(3): e000949[2025-07-15]. . |
| [101] | MASUDA M, TING T C, LEVI M, et al.. Activating transcription factor 4 regulates stearate-induced vascular calcification[J]. J. Lipid Res., 2012, 53(8): 1543-1552. |
| [102] | KELLER M, SCHLEINITZ D, FÖRSTER J, et al.. THOC5 a novel gene involved in HDL-cholesterol metabolism[J]. J. Lipid Res., 2013, 54(11): 3170-3176. |
| [103] | KOVACIC J C, MORENO P, HACHINSKI V, et al.. Cellular senescence, vascular disease, and aging: Part 1 of a 2-part review[J]. Circulation, 2011, 123(15): 1650-1660. |
| [104] | KOVACIC J C, MORENO P, NABEL E G, et al.. Cellular senescence, vascular disease, and aging: part 2 of a 2-part review: clinical vascular disease in the elderly[J]. Circulation, 2011, 123(17): 1900-1910. |
| [105] | TONELLI M, CURHAN G, PFEFFER M, et al.. Relation between alkaline phosphatase, serum phosphate, and all-cause or cardiovascular mortality[J]. Circulation, 2009, 120(18): 1784-1792. |
| [106] | LONDON G M. Bone-vascular cross-talk[J]. J. Nephrol., 2012, 25(5): 619-625. |
| [107] | MUTELIEFU G, SHIMIZU H, ENOMOTO A, et al.. Indoxyl sulfate promotes vascular smooth muscle cell senescence with upregulation of p53, p21, and prelamin A through oxidative stress[J]. Am. J. Physiol. Cell Physiol., 2012, 303(2): 126-134. |
| [108] | OHYAMA Y, KURABAYASHI M, MASUDA H, et al.. Molecular cloning of rat klotho cDNA: markedly decreased expression of klotho by acute inflammatory stress[J]. Biochem. Biophys. Res. Commun., 1998, 251(3): 920-925. |
| [109] | KURO O M. Klotho as a regulator of oxidative stress and senescence[J]. Biol. Chem., 2008, 389(3): 233-241. |
| [110] | LIU F, WU S, REN H, et al.. Klotho suppresses RIG-I-mediated senescence-associated inflammation[J]. Nat. Cell Biol., 2011, 13(3): 254-262. |
| [111] | SHILOH Y, ZIV Y. The ATM protein kinase: regulating the cellular response to genotoxic stress, and more[J]. Nat. Rev. Mol. Cell Biol., 2013, 14(4): 197-210. |
| [112] | D'ADDA DI FAGAGNA F, REAPER P M, CLAY-FARRACE L, et al.. A DNA damage checkpoint response in telomere-initiated senescence[J]. Nature, 2003, 426(6963): 194-198. |
| [113] | TOUSSAINT O, ROYER V, SALMON M, et al.. Stress-induced premature senescence and tissue ageing[J]. Biochem. Pharmacol., 2002, 64(5-6): 1007-1009. |
| [114] | LI X, LIU A, XIE C, et al.. The transcription factor GATA6 accelerates vascular smooth muscle cell senescence-related arterial calcification by counteracting the role of anti-aging factor SIRT6 and impeding DNA damage repair[J]. Kidney Int., 2024, 105(1): 115-131. |
| [115] | LIU Y, DROZDOV I, SHROFF R, et al.. Prelamin A accelerates vascular calcification via activation of the DNA damage response and senescence-associated secretory phenotype in vascular smooth muscle cells[J]. Circ. Res., 2013, 112(10): 99-109. |
| [116] | RODIER F, PCOPPÉ J, PATIL C K, et al.. Persistent DNA damage signalling triggers senescence-associated inflammatory cytokine secretion[J]. Nat. Cell Biol., 2009, 11(8): 973-979. |
| [117] | FADINI GP, RATTAZZI M, MASTSUNOTO T, et al.. Emerging role of circulating calcifying cells in the bone-vascular axis[J].Circulation, 2012, 125(22): 2772-2781. |
| [118] | GORDON L B, KLEINMAN M E, MILLER D T, et al.. Clinical trial of a farnesyltransferase inhibitor in children with Hutchinson-Gilford progeria syndrome[J]. Proc. Natl. Acad. Sci. USA, 2012, 109(41): 16666-16671. |
| [119] | UGALDE A P, RAMSAY A J, DE LA ROSA J, et al.. Aging and chronic DNA damage response activate a regulatory pathway involving miR-29 and p53[J]. EMBO J., 2011, 30(11): 2219-2232. |
| [120] | ALESUTAN I, RAZAZIAN M, LUONG T T D, et al.. Augmentative effects of leukemia inhibitory factor reveal a critical role for TYK2 signaling in vascular calcification[J]. Kidney Int., 2024, 106(4): 611-624. |
| No related articles found! |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
