生物技术进展 ›› 2025, Vol. 15 ›› Issue (5): 819-827.DOI: 10.19586/j.2095-2341.2025.0019

• 进展评述 • 上一篇    下一篇

3D生物打印技术在甲状腺肿瘤模型构建中的应用进展与潜力

毕德慧1(), 赵鹏翔1, 张冬雪1, 邓欣瑶1, 韩峥1, 张旭娟2()   

  1. 1.北京工业大学化学与生命科学学院,北京 100124
    2.北京工业大学材料科学与工程学院,北京 100124
  • 收稿日期:2025-02-19 接受日期:2025-07-30 出版日期:2025-09-25 发布日期:2025-11-11
  • 通讯作者: 张旭娟
  • 作者简介:毕德慧 E-mail:3261687005@qq.com
  • 基金资助:
    国家自然科学基金项目(8220030020)

Application Advances and Potential of 3D Bio-printing Technology in Constructing Thyroid Tumor Models

Dehui BI1(), Pengxiang ZHAO1, Dongxue ZHANG1, Xinyao DENG1, Zheng HAN1, Xujuan ZHANG2()   

  1. 1.College of Chemistry and Life Sciences,Beijing University of Technology,Beijing 100124,China
    2.College of Materials Science and Engineering,Beijing University of Technology,Beijing 100124,China
  • Received:2025-02-19 Accepted:2025-07-30 Online:2025-09-25 Published:2025-11-11
  • Contact: Xujuan ZHANG

摘要:

甲状腺肿瘤发病率逐年上升,传统病理诊断依赖手术切除样本,存在创伤大、样本稀缺等问题,制约了精准医疗的发展。近年来,生物技术与材料科学飞速发展,3D生物打印已成为肿瘤研究的重要工具。既往获取甲状腺肿瘤模型的传统方法,如甲状腺穿刺活检或手术后肿瘤组织二维细胞培养或类器官培养,难以准确模拟人类肿瘤的复杂性。3D生物打印技术为甲状腺肿瘤模型构建带来了新方案。它能模拟肿瘤微环境,使细胞外基质成分、力学性能与生物体内接近。通过优化参数和生物墨水,打印后细胞存活率达90%以上,为甲状腺肿瘤机制研究和药物研发提供了新的工具。利用该技术构建的模型可进行快速药物筛选实验,实验周期缩短约50%,能更准确地预测药物效果,为临床精准治疗提供了有力依据。通过梳理3D生物打印在甲状腺肿瘤模型构建中的最新进展与潜力,为病理学研究、药物开发和临床精准治疗提供了高效工具,有望降低医疗成本并改善患者预后,为甲状腺研究人员提供有价值的参考,推动甲状腺肿瘤研究和临床治疗的发展。

关键词: 甲状腺肿瘤, 肿瘤模型, 3D生物打印

Abstract:

The incidence of thyroid tumors has been increasing annually. Traditional pathological diagnosis relies on surgically resected samples, which are invasive and often scarce, limiting the progress of precision medicine. Recent advances in biotechnology and materials science have made 3D bioprinting a vital tool in tumor research. Conventional methods for obtaining thyroid tumor models, such as two-dimensional cell cultures or organoids derived from biopsy or surgical samples, struggle to accurately mimic the complexity of human tumors. 3D bioprinting offers a novel approach for constructing thyroid tumor models by closely simulating the tumor microenvironment, including extracellular matrix composition and mechanical properties that resemble in vivo conditions. Through parameter optimization and the use of advanced bioinks, post-printing cell viability exceeds 90%, providing a powerful platform for investigating tumor mechanisms and developing new drugs. These bioprinted models enable rapid drug screening, reducing experimental timelines by approximately 50% while improving the accuracy of drug response predictions. This supports more informed clinical decision-making for precision therapy. This review summarized recent progress and potential applications of 3D bioprinting in thyroid tumor models constructing. It highlighted the technology's role as an efficient tool for pathological studies, drug development, and personalized treatment, potentially lowering medical costs and improving patient outcomes. By offering valuable insights for thyroid researchers, 3D bioprinting promises to advance both basic research and clinical management of thyroid tumors.

Key words: thyroid cancer, tumor model, 3D bioprinting

中图分类号: