Current Biotechnology ›› 2021, Vol. 11 ›› Issue (5): 634-641.DOI: 10.19586/j.2095-2341.2021.0112
• Mycotoxin Deoxynivalenol (DON) • Previous Articles Next Articles
Received:2021-06-16
Accepted:2021-07-27
Online:2021-09-25
Published:2021-10-08
Contact:
Hongqi SI
通讯作者:
司红起
作者简介:阮双 E-mail: r18683258923@163.com;
基金资助:CLC Number:
Shuang RUAN, Hongqi SI. Research Progress on DON Toxin in Wheat[J]. Current Biotechnology, 2021, 11(5): 634-641.
阮双, 司红起. 小麦DON毒素研究进展[J]. 生物技术进展, 2021, 11(5): 634-641.
| 物种 | DON代谢物 |
|---|---|
| 植物 | 3‑O‑葡萄糖苷呕吐毒素(DON‑3G) |
| 动物 | 3‑葡萄糖苷-呕吐毒素(DON‑3GA)、15‑葡萄糖苷-呕吐毒素(DON‑15GA) |
| 真菌 | 3‑乙酰基呕吐毒素(3Ac‑DON)、15‑乙酰基呕吐毒素(15Ac‑DON) |
| 细菌 | 脱环氧基-呕吐毒素(DOM‑1) |
Table 1 The DON metabolites of different species
| 物种 | DON代谢物 |
|---|---|
| 植物 | 3‑O‑葡萄糖苷呕吐毒素(DON‑3G) |
| 动物 | 3‑葡萄糖苷-呕吐毒素(DON‑3GA)、15‑葡萄糖苷-呕吐毒素(DON‑15GA) |
| 真菌 | 3‑乙酰基呕吐毒素(3Ac‑DON)、15‑乙酰基呕吐毒素(15Ac‑DON) |
| 细菌 | 脱环氧基-呕吐毒素(DOM‑1) |
| 国家/地区/组织 | 食品类别 | 限量标准/(μg·kg-1) |
|---|---|---|
| 中国 | 未加工硬粒小麦和燕麦 | 1 750 |
| 小麦及其制品、麦片、小麦粉 | 1 000 | |
| 面粉、干麦麸 | 750 | |
| 面包、糕点、早餐麦片 | 500 | |
| 美国 | 小麦及小麦制品 | 4 000 |
| 面粉、麸皮、胚芽 | 1 000 | |
| 加拿大 | 未清洗的软质小麦 | 2 000 |
| 日本 | 小麦及其制品 | 1 100 |
| 欧盟 | 未加工硬质小麦、燕麦 | 1 750 |
| 面包、糕点、饼干 | 500 | |
| 婴儿谷物食品 | 200 | |
国际食品法典委员会 (Codex Alimentarius Commission,CAC) | 小麦、大麦 | 2 000 |
| 面粉、粗粉、麦片 | 1 000 | |
| 婴儿谷物食品 | 200 |
Table 2 The limit standard of DON toxin for wheat and its products in some countries, regions or organization[25-26]
| 国家/地区/组织 | 食品类别 | 限量标准/(μg·kg-1) |
|---|---|---|
| 中国 | 未加工硬粒小麦和燕麦 | 1 750 |
| 小麦及其制品、麦片、小麦粉 | 1 000 | |
| 面粉、干麦麸 | 750 | |
| 面包、糕点、早餐麦片 | 500 | |
| 美国 | 小麦及小麦制品 | 4 000 |
| 面粉、麸皮、胚芽 | 1 000 | |
| 加拿大 | 未清洗的软质小麦 | 2 000 |
| 日本 | 小麦及其制品 | 1 100 |
| 欧盟 | 未加工硬质小麦、燕麦 | 1 750 |
| 面包、糕点、饼干 | 500 | |
| 婴儿谷物食品 | 200 | |
国际食品法典委员会 (Codex Alimentarius Commission,CAC) | 小麦、大麦 | 2 000 |
| 面粉、粗粉、麦片 | 1 000 | |
| 婴儿谷物食品 | 200 |
| 常用DON毒素检测方法 | 英文简称 | 特点 |
|---|---|---|
| 同位素稀释液相色谱-串联质谱法 | ID‑LC/MS/MS | 操作简便、快速,具有很高的准确度和灵敏度 |
| 免疫亲和层析净化高效液相色谱法 | IAC‑HPLC | 灵敏度高、重复性好、专属性高,但耗时长、成本高 |
| 薄层色谱测定法 | TLC | 操作简单、高效、灵敏、快速分离 |
| 酶联免疫吸附测定法 | ELISA | 操作便捷、快速检测、试用性较强,结果较准确 |
Table 3 Commonly used DON detection method
| 常用DON毒素检测方法 | 英文简称 | 特点 |
|---|---|---|
| 同位素稀释液相色谱-串联质谱法 | ID‑LC/MS/MS | 操作简便、快速,具有很高的准确度和灵敏度 |
| 免疫亲和层析净化高效液相色谱法 | IAC‑HPLC | 灵敏度高、重复性好、专属性高,但耗时长、成本高 |
| 薄层色谱测定法 | TLC | 操作简单、高效、灵敏、快速分离 |
| 酶联免疫吸附测定法 | ELISA | 操作便捷、快速检测、试用性较强,结果较准确 |
| 亲本材料 | 群体 | DON积累抗性位点(QTL) | 最大表型变异率 |
|---|---|---|---|
| Nanda2419‑Wangshuibai | RIL | 2A、3B、4B、5A、6B、6D、7A、7D | 23.4%[ |
| Arina‑NK93604 | DH | 1A、1B、2A、6B、7A | 27.9%[ |
| Wang shui bai‑Wheaton | RIL | 1A、1B、3A、3B、4B、5A、5D、7A | 33.9%[ |
| Wang shui bai‑Annong8455 | RIL | 2A、3B、5A | —[ |
| Ernie‑Mo94‑317 | RIL | 2B、3B、4B、5A | 14%[ |
| VAOOW‑38 × Pioneer 26R46 | RIL | 2A、5B | 13.4%[ |
| NC‑Neuse‑AGS 2000 | RIL | 1A、1B、1D、2A、4A、5B | 18.2%[ |
| IL94‑1653‑Patton | RIL | 2B | 4.2%[ |
| Arina‑Riband | DH | 4D、6B、7D | 11.7%[ |
| Sumai 3‑Gamenya | DH | 2D | 25%[ |
Table 4 Some QTLs related to DON accumulation resistance
| 亲本材料 | 群体 | DON积累抗性位点(QTL) | 最大表型变异率 |
|---|---|---|---|
| Nanda2419‑Wangshuibai | RIL | 2A、3B、4B、5A、6B、6D、7A、7D | 23.4%[ |
| Arina‑NK93604 | DH | 1A、1B、2A、6B、7A | 27.9%[ |
| Wang shui bai‑Wheaton | RIL | 1A、1B、3A、3B、4B、5A、5D、7A | 33.9%[ |
| Wang shui bai‑Annong8455 | RIL | 2A、3B、5A | —[ |
| Ernie‑Mo94‑317 | RIL | 2B、3B、4B、5A | 14%[ |
| VAOOW‑38 × Pioneer 26R46 | RIL | 2A、5B | 13.4%[ |
| NC‑Neuse‑AGS 2000 | RIL | 1A、1B、1D、2A、4A、5B | 18.2%[ |
| IL94‑1653‑Patton | RIL | 2B | 4.2%[ |
| Arina‑Riband | DH | 4D、6B、7D | 11.7%[ |
| Sumai 3‑Gamenya | DH | 2D | 25%[ |
| 1 | YOSHIZAWA T, MOROOKA N. Deoxynivalenol and its monoacetate: new mycotoxins from Fusarium roseum and moldy barley [J]. Agric. Biol. Chem., 1973, 37(12):2933-2934. |
| 2 | ABDEL-WAHHAB M A, EL-NEKEETY A. Chapter 44-mycotoxin deoxynivalenol and oxidative stress: role of silymarin and inulin protection [J]. Toxicology, 2021:457-467. |
| 3 | PINTON P, ACCENSI F, BEAUCHAMP E, et al.. Ingestion of deoxynivalenol (DON) contaminated feed alters the pig vaccinal immune responses [J]. Toxicol. Lett., 2008, 177(3):215-222. |
| 4 | ALIZADEH A, BRABER S, AKBARI P, et al.. Deoxynivalenol and its modified forms: Are there major differences? [J/OL]. Toxins, 2016, 8(11):334 [2021-7-17]. . |
| 5 | KHANEGHAH A M, MARTINS L M, HERTWIG A V, et al.. Deoxynivalenol and its masked forms: characteristics, incidence, control and fate during wheat and wheat based products processing——a review [J]. Trends Food Sci. Technol., 2018, 71:13-24. |
| 6 | WOLF C E, BULLERMAN L B. Heat and pH alter the concentration of deoxynivalenol in an aqueous environment [J]. J. Food Prot., 1998, 61(3):365-367. |
| 7 | 薛金文,顾惠敏,施盛山.小麦中呕吐毒素降解的研究进展[J].粮油加工,2014,(1):61-64. |
| 8 | 庄巧云,谢卫忠,方晓斌.关于小麦粉呕吐毒素(DON)的研究[J].现代食品,2017,5(10):78-80. |
| 9 | WU Q H, WANG X, YANG W, et al.. Oxidative stress-mediated cytotoxicity and metabolism of T-2 toxin and deoxynivalenol in animals and humans: an update [J]. Arch. Toxicol., 2014, 88(7):1309-1326. |
| 10 | TROADEC J D, BARBOUCHE R, STÉPHANIE G, et al.. The food contaminant deoxynivalenol provokes metabolic impairments resulting in non-alcoholic fatty liver (NAFL) in mice [J/OL]. Sci. Rep., 2020, 10(1):12072[2021-7-17]. . |
| 11 | 霍星华,赵宝玉,万学攀,等.脱氧雪腐镰刀菌烯醇的毒性研究进展[J].毒理学杂志,2008,22(2):151-154. |
| 12 | OLOPADE B K, ORANUSI S U, NWINYI O C, et al.. Occurrences of deoxynivalenol, zearalenone and some of their masked forms in selected cereals from Southwest Nigeria [J]. NFS J., 2021, 23:24-29. |
| 13 | WANG S, WU K, XUE D, et al.. Mechanism of deoxynivalenol mediated gastrointestinal toxicity: insights from mitochondrial dysfunction [J/OL]. Food Chem. Toxicol., 2021, 153:112214 [2021-7-18]. . |
| 14 | CAO L, JIANG Y, ZHU L, et al.. Deoxynivalenol induces caspase-8-mediated apoptosis through the mitochondrial pathway in hippocampal nerve cells of piglet [J/OL]. Toxins, 2021, 13(2):73[2021-7-17]. . |
| 15 | PESTKA J J. Deoxynivalenol: toxicity, mechanisms and animal health risks [J]. Anim. Feed Sci. Technol., 2007, 137(3-4):283-298. |
| 16 | BARASH A, SASKIA B, PEYMAN A, et al.. Deoxynivalenol and its modified forms: are there major differences?[J/OL]. Toxins, 2016, 8(11):334[2021-7-17].. |
| 17 | BROEKAERT N, DEVREESE M, DEMEYERE K, et al.. Comparative in vitro cytotoxicity of modified deoxynivalenol on porcine intestinal epithelial cells [J]. Food Chem. Toxicol., 2016, 95:103-109. |
| 18 | JIA H, LIU N, ZHANG Y, et al.. 3-Acetyldeoxynivalenol induces cell death through endoplasmic reticulum stress in mouse liver [J/OL]. Environ. Poll., 2021, 286:117238 [2020-7-18]. . |
| 19 | DENG Y, YOU L, NEPOVIMOVA E, et al.. Biomarkers of deoxynivalenol (DON) and its modified form DON-3-glucoside (DON-3G) in humans [J]. Trends Food Sci. Technol., 2021, 110:551-558. |
| 20 | 姜冬梅,王荷,武琳霞,等.小麦中呕吐毒素研究进展[J].食品安全质量检测学报,2020,11(2):423-432. |
| 21 | 陈帅,于英威,杨娟,等.粮食中的呕吐毒素(DON)研究进展[J].粮油仓储科技通讯,2019,35(4):46-49. |
| 22 | 王国强.2019年我国部分地区饲料及饲料原料霉菌毒素污染调查报告[J].养猪,2020(2):14-16. |
| 23 | 孙宝胜.小麦中呕吐毒素分布特点及去除技术研究进展[J].现代面粉工业,2019,33(2):11-14. |
| 24 | 丁卫新.呕吐毒素在小麦籽粒中分布规律的研究[J].现代面粉工业,2020,34(5):30-33. |
| 25 | 尚艳娥,杨卫民.CAC、欧盟、美国与中国粮食中真菌毒素限量标准的差异分析[J].食品科学技术学报,2019,37(1):14-19. |
| 26 | 庞淑婷,刘颖.中外谷物及其制品中污染物限量要求分析[J].标准科学,2021(3):70-76. |
| 27 | 曾宪冬,柳洁,曾灼祥,等.同位素稀释-液相色谱/串联质谱法测定粮食产品中多组分真菌毒素[J].职业卫生与病伤,2020,35(6):365-371, 374. |
| 28 | 杨丽博,邵威平.免疫亲和层析净化高效液相色谱法测定小麦粉中脱氧雪腐镰刀菌烯醇方法的研究[J].农业科技与信息,2018(2):48-50, 55. |
| 29 | CHENG S, BHAT S M, TIAN C, et al.. Thin layer chromatography-mass spectrometry(TLC-MS) [C]// 第三届全国质谱分析学术报告会. 第三届全国质谱分析学术报告会摘要集. 福建厦门, 2017:1. |
| 30 | 崔廷婷,万宇平,陈立军,等.三唑酮及其代谢物残留检测的酶联免疫方法的建立[J].农业与技术,2021,41(10):57-60. |
| 31 | 杨丹,耿志明,马鸿翔,等.高效液相色谱-紫外法同时检测小麦中DON、15ACDON和3ACDON[J].作物学报,2012,38(1):186-189. |
| 32 | MESTERHÁZY A. Types and components of resistance to Fusarium head blight of wheat [J]. Plant Breed., 2006, 114(5):377-386. |
| 33 | MILLER J D, YOUNG J C, SAMPSON D R. Deoxynivalenol and Fusarium head blight resistance in spring cereals [J]. J. Phytopathol., 1985, 113(4):359-367. |
| 34 | 王旭,黄德玉,吴庆华,等.真菌毒素引起的氧化应激及其毒理学意义[J].生态毒理学报,2015,10(6):62—70. |
| 35 | 裴自友,温辉芹,王晋.小麦镰刀菌毒素DON积累抗性研究进展[J].作物杂志, 2008 (4):5-8. |
| 36 | 裴自友, 贾高峰, 亓增军, 等. 普通小麦籽粒DON含量的配合力分析[J].作物学报,2007(05):731-737. |
| 37 | SHAO J, PEI Z, JING H, et al.. Antifungal activity of myriocin against Fusarium graminearum and its inhibitory effect on deoxynivalenol production in wheat grains [J/OL]. Physiol. Mol. Plant Pathol., 2021, 114(12):101635 [2021-7-18]. . |
| 38 | XIU Q, BI L Y, XU H R, et al.. Antifungal cctivity of quinofumelin against Fusarium graminearum and its inhibitory effect on DON biosynthesis [J/OL]. Toxins, 2021, 13(5):348[2021-7-17]. . |
| 39 | 王亚君,翟焕趁,张帅兵,等.小麦赤霉病菌FgRab7调控Tri基因表达及DON毒素合成[J].河南工业大学学报(自然科学版),2017,38(2):57-62, 68. |
| 40 | ZHENG H W, LI L P, MIAO P F, et al.. FgSec2A, a guanine nucleotide exchange factor of FgRab8, is important for polarized growth, pathogenicity and deoxynivalenol production in Fusarium graminearum [J]. Environ. Microbiol., 2018, 20(9):3378-3392. |
| 41 | 孟瑶,翟焕趁,张帅兵,等.小麦赤霉病菌FgVPS26与FgRab7的相互作用及对DON毒素合成的影响[J].河南工业大学学报(自然科学版),2019,40(2):20-26. |
| 42 | ZHAO L F, MA X,SU P S, et al.. Cloning and characterization of a specific UDP-glycosyltransferase gene induced by DON and Fusarium graminearum [J]. Plant cell Rep., 2018, 37(4):641-652. |
| 43 | HE Y, WU L, LIU X, et al.. TaUGT6, a novel UDP-Glycosyltransferase gene enhances the resistance to FHB and DON accumulation in wheat [J/OL]. Front. plant Sci., 2020, 11(5):574775 [2021-7-17]. . |
| 44 | 吴迪,朱素芹,张语卉,等.HGGT基因与小麦赤霉病籽粒毒素积累的关系解析[J].江苏农业科学,2020,48(11):96-100. |
| 45 | LI C, ZHU H, ZHANG C, et al.. Mapping QTLs associated with Fusarium-damaged kernels in the Nanda 2419×Wangshuibai population [J]. Euphytica, 2008, 163(2):185-191. |
| 46 | SEMAGN K, SKINNES H, BJRNSTAD S, et al.. Quantitative trait loci controlling Fusarium head blight resistance and low deoxynivalenol content in hexaploid wheat population from 'Arina' and NK93604 [J]. Crop Sci., 2007, 47(1):294-303. |
| 47 | YU J B, BAI G H, HOU W C, et al.. Quantitative trait loci for Fusarium head blight resistance in a recombinant inbred population of Wangshuibai/Wheaton [J]. Phytopathology, 2007, 98(1):87-94. |
| 48 | MA H X, ZHANG K M, GAO L, et al.. Quantitative trait loci for resistance to Fusarium head blight and deoxynivalenol accumulation in Wangshuibai wheat under field conditions [J]. Plant Pathol., 2010, 55(6):739-745. |
| 49 | ABATE Z A. Quantitative trait loci associated with deoxynivalenol content and kernel quality in the soft red winter wheat 'Ernie' [J]. Crop Sci., 2008, 48(4):1408-1418. |
| 50 | CHRISTOPHER M D, LIU S, HALL M D, et al.. Identification and mapping of adult plant stripe rust resistance in soft red winter wheat VA00W-38 [J]. Plant Breed., 2013, 132(3):53-60. |
| 51 | PETERSEN S, LYERLY J H, MALONEY P V, et al.. Mapping of Fusariumhead blight resistance quantitative trait loci in winter wheat cultivar NC-Neuse [J]. Crop Sci., 2016, 56(4):1473-1483. |
| 52 | BONIN C M, KOLB F L. Resistance to Fusarium head blight and kernel damage in a winter wheat recombinant inbred line population [J]. Crop Sci., 2009, 49(4):1304-1312. |
| 53 | DRAEGER R, GOSMAN N, STEED A, et al.. Identification of QTLs for resistance to Fusarium head blight, DON accumulation and associated traits in the winter wheat variety Arina [J]. Theor. Appl. Genet., 2007, 115(5):617-625. |
| 54 | HANDA H, NAMIKI N, XU D, et al.. Dissecting of the FHB resistance QTL on the short arm of wheat chromosome 2D using a comparative genomic approach: from QTL to candidate gene [J]. Mol. Breed., 2008, 22(1):71-84. |
| 55 | SOMERS D J, FEDAK G, SAVARD M. Molecular mapping of novel genes controlling Fusarium head blight resistance and deoxynivalenol accumulation in spring wheat [J]. Genome, 2003, 46(4):555-564. |
| 56 | JIANG G L, DONG Y, SHI J R, et al.. QTL analysis of resistance to Fusarium head blight in the novel wheat germplasm CJ 9306. II. Resistance to deoxynivalenol accumulation and grain yield loss [J]. Theor. Appl. Genet., 2007, 115(8):1043-1052. |
| 57 | BERNARDO A, BAI G, YU J, et al.. Registration of Near-Isogenic winter wheat germplasm contrasting in Fhb1 for Fusarium head blight resistance [J]. J. Plant Regist., 2014, 8(1):106-108. |
| 58 | ISLAM M S, BROWN-GUEDIRA G, SANFORD D V, et al.. Novel QTL associated with the Fusarium head blight resistance in Truman soft red winter wheat [J]. Euphytica, 2016, 207(3):571-592. |
| 59 | CRISTIANO L D S, FRITZ A, CLINESMITH M, et al.. QTL mapping of Fusarium head blight resistance and deoxynivalenol accumulation in the Kansas wheat variety 'Everest' [J/OL]. Mol. Breed., 2019, 39(3):35[2021-7-17]. . |
| 60 | GODDARD R, STEED A, SCHEEREN P L, et al.. Identification of Fusarium head blight resistance loci in two Brazilian wheat mapping populations [J/OL]. PLoS ONE, 2021, 16(3):e0248184[2021-7-17]. . |
| 61 | ZHENG T, HUA C, LI L, et al.. Integration of meta-QTL discovery with omics: towards a molecular breeding platform for improving wheat resistance to Fusarium head blight [J/OL]. Crop J., 2020,doi: 10.1016/j.cj.2020.10.006[2021-7-17]. . |
| 62 | 苏培森.小麦抗赤霉病相关基因的分离和功能研究[D].山东泰安:山东农业大学,博士学位论文,2020. |
| 63 | LI G, ZHOU J, JIA H, et al.. Mutation of a histidine-rich calcium-binding-protein gene in wheat confers resistance to Fusarium head blight [J]. Nat. Genet., 2019, 51(8):1101-1112. |
| 64 | WANG H, SUN S, GE W, et al.. Horizontal gene transfer of Fhb7 from fungus underlies Fusarium head blight resistance in wheat [J/OL]. Science, 2020, 368(6493):eaba5435[2021-7-17]. . DOI: 10.1126/science.aba5435. |
| [1] | Jingjing YANG, Kewei NING, Mingjuan WANG, Binghui TANG, Junling CAI, Aiping LIU, Xiaodong XIE. The Evaluation Method for Drought Resistance During the Germination Period of Upland Cotton and Screening of High-quality Germplasm Resources in the Shihezi Reclamation Area [J]. Current Biotechnology, 2025, 15(3): 486-494. |
| [2] | Yaoxuan JIAO, Min LI, Xinya QU, Tianling LIU, Xiumei SHENG, Xiaoxiang ZHOU. Advances on Phage Genetic Engineering Technology and Applications [J]. Current Biotechnology, 2025, 15(2): 189-200. |
| [3] | Wenxuan PU, Xi DAI, Jiani YUE, Xiuxia FU, Na SONG, Wei LI, Yu PENG. Research Progress of Iron Signaling and its Role in Plant-pathogen Interaction [J]. Current Biotechnology, 2025, 15(1): 1-10. |
| [4] | Shuanghui ZHOU. Microbial Contamination and Antibiotic Resistance Characteristics in Raw Milk from Pastures in Northern Fujian Province [J]. Current Biotechnology, 2025, 15(1): 127-134. |
| [5] | Mengqi FANG, Ying ZHAO, Zichen WANG, Wenhao JIA, Hui WANG, Yunxia LUAN. Establishment and Application of Aptamer-based Fluorescent Test Strip Method for the Detection of Alternariol [J]. Current Biotechnology, 2024, 14(6): 1024-1031. |
| [6] | Caihua LI, Yankun ZHAO, Zhankun LI, Zilong SHAN, Qiao CAO, Liang MA, Fei WANG, Zhenxian GAO. Research Progress on Rht Genes in Wheat [J]. Current Biotechnology, 2024, 14(6): 980-992. |
| [7] | Qing YANG, Gang NIU, Jiangang KANG, Chenfang WANG, Kaili DUAN. Pathogenic Mechanism of Fusarium graminearum and its Molecular Interaction with Wheat [J]. Current Biotechnology, 2024, 14(5): 738-744. |
| [8] | Liwen WANG, Jiangkun WANG, Bingbing WANG, Jianhong XU, Jianrong SHI, Xin LIU. Roles of Fusarium Toxins in Plant-pathogen Interaction [J]. Current Biotechnology, 2024, 14(2): 182-188. |
| [9] | Zhonghui CHEN, Jinghong LI. Effects of Exogenous Phytohormones on Heat Tolerance of Epipremnum aureum Under Hydroponic Culture [J]. Current Biotechnology, 2023, 13(5): 742-747. |
| [10] | Yingrui GAO, Fuzhong KANG, Tiejian MENG, Kefei LIU, Tiaotiao WANG, Jinyan CHEN, Tong SUN. Safety Evaluation of Clostridium butyricum Based on Whole Genome Sequencing [J]. Current Biotechnology, 2023, 13(5): 755-759. |
| [11] | Jinping CHEN, Quanjia CHEN, Kai ZHENG, Yuanchun PU, Jianglin XU, Ting ZHOU, Yejun YANG, Guoqing SUN. Cotton Drought Resistance Index Screening and Comprehensive Evaluation of Drought Resistance of Germplasm Resources During Germination Period [J]. Current Biotechnology, 2023, 13(4): 556-564. |
| [12] | Min LI, Lei WANG, Junjie ZOU. Opportunities and Challenges for the Industrial Application of Transgenic Insect-resistant and Herbicide-tolerant Maize in China [J]. Current Biotechnology, 2023, 13(2): 157-165. |
| [13] | Haoqian WANG, Yan HUANG, Yuting SHI, Pengyu ZHU, Yuzhou XIE, Chunmeng HUANG, Xiaoyu LU, Wei FU. Construction and Application of Reference Plasmids for Detection of Transgenic Insect-resistant Crops [J]. Current Biotechnology, 2023, 13(1): 83-89. |
| [14] | Qiao CAO, Zhanliang SHI, Guocong ZHANG, Jinfu BAN, Shusong ZHENG, Xiaoyi FU, Shichang ZHANG, Mingqi HE, Ran HAN, Zhenxian GAO. Progress of CRISPR/Cas9 Application in Wheat Breeding [J]. Current Biotechnology, 2021, 11(6): 661-667. |
| [15] | Min LIAO, Luo YANG, Zhen WANG, Yarong HAO. Research Progress on the Pathogenesis of Diabetic Cardiomyopathy [J]. Current Biotechnology, 2021, 11(6): 700-704. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
