| 1 | PESTKA J J, SMOLINSKI A T. Deoxynivalenol: toxicology and potential effects on humans [J]. J. Toxicol. Env. Heal. B, 2005, 8(1):39-69. | 
																													
																							| 2 | MARROQUÍN-CARDONA A G, JOHNSON N M, PHILLIPS T D, et al.. Mycotoxins in a changing global environment - a review [J]. Food Chem. Toxicol., 2014, 69: 220-230. | 
																													
																							| 3 | DESJARDINS A E, PROCTOR R H, BAI G H, et al.. Reduced virulence of trichothecene-nonproducing mutants of Gibberella zeae in wheat field tests[J]. Mol. Plant Microbe Interact., 1996,9(9): 775-781. | 
																													
																							| 4 | PROCTOR R H, HOHN T M, MCCORMICK S P. Reduced virulence of Gibberella zeae caused by disruption of a trichothecene toxin biosynthetic gene[J]. Mol. Plant Microbe Interact., 1995, 8: 593-601. | 
																													
																							| 5 | WANG Y, YAN H, WANG Q, et al.. Regulation of the phytotoxic response of Arabidopsis thaliana to the Fusarium mycotoxin deoxynivalenol[J]. J. Integr. Agr., 2020; 19: 759-767. | 
																													
																							| 6 | KELLER N P. Translating biosynthetic gene clusters into fungal armor and weaponry[J]. Nat. Chem. Biol., 2015, 11: 671-677. | 
																													
																							| 7 | HOHN T M, BEREMAND P D. Isolation and nucleotide sequence of a sesquiterpene cyclase gene from the trichothecene-producing fungus Fusarium sporotrichioides[J]. Gene, 1989, 79(1):131-138. | 
																													
																							| 8 | ALEXANDER N J, PROCTOR R H, MCCORMICK S P. Genes, gene clusters, and biosynthesis of trichothecenes and fumonisins in Fusarium[J]. Toxin Rev., 2009,28(2-3):198-215. | 
																													
																							| 9 | PROCTOR R H, MCCORMICK S P, KIM H S, et al.. Evolution of structural diversity of trichothecenes, a family of toxins produced by plant pathogenic and entomopathogenic fungi[J/OL]. PLoS Pathog., 2018, 14(4):e1006946[2021-08-02]. . | 
																													
																							| 10 | GALE L R, BRYANT J D, CALVO S, et al.. Chromosome complement of the fungal plant pathogen Fusarium graminearum based on genetic and physical mapping and cytological observations[J]. Genetics., 2005; 171: 985-1001. | 
																													
																							| 11 | MCCORMICK S P, STANLEY A M, STOVER N A, et al.. Trichothecenes: from simple to complex mycotoxins[J/OL]. Toxins, 2011, doi:10.3390/toxins3070802[2021-08-02]. . | 
																													
																							| 12 | GIL-SERNA J, VÁZQUEZ C, PATIÑO B. Genetic regulation of aflatoxin, ochratoxin A, trichothecene, and fumonisin biosynthesis: a review[J]. Int. Microbiol., 2020, 23:89-96. | 
																													
																							| 13 | BOENISCH M J, SCHÄFER W. Fusarium graminearum froms myccotoxin producing infection structures on wheat[J/OL]. BMC Plant Biol., 2011,11: 110 [2021-08-02]. . | 
																													
																							| 14 | Boenisch M J, Broz K L, Purvine S O, et al.. Structural reorganization of the fungal endoplasmic reticulum upon induction of mycotoxin biosynthesis[J/OL]. Sci. Rep., 2017, 7:44296[2021-08-02]. . | 
																													
																							| 15 | TANG G, CHEN Y, XU J R, et al.. The fungal myosin I is essential for Fusarium toxisome formation[J/OL]. PLoS Pathog., 2018, 14(1): e1006827[2021-08-02]. . | 
																													
																							| 16 | TANG G, CHEN A, DAWOOD D H, et al.. Capping proteins regulate fungal development, DON-toxisome formation and virulence in Fusarium graminearum[J]. Mol. Plant Pathol., 2020, 21: 173-187. | 
																													
																							| 17 | MENKE J, WEBER J, BROZ K, et al.. Cellular development associated with induced mycotoxin synthesis in the filamentous fungus Fusarium graminearum[J/OL]. PLoS ONE, 2013, 8(5):e63077[2021-08-02]. . | 
																													
																							| 18 | CHEN Y, KISTLER H C, MA Z. Trichothecene mycotoxins: biosynthesis, regulation, and management[J/OL]. Annu. Rev. Phytopathol., 2019,doi:10.1146/annurev-phyto-082718-100318[2021-08-02]. . | 
																													
																							| 19 | KONING A J, ROBERTS C J, WRIGHT R L. Different subcellular localization of Saccharomyces cerevisiae HMG-CoA reductase isozymes at elevated levels corresponds to distinct endoplasmic reticulum membrane proliferations[J]. Mol. Biol. Cell., 1996, 7(5):769-789. | 
																													
																							| 20 | ZHANG C, CHEN Y, YIN Y, et al.. A small molecule species specifically inhibits Fusarium myosin I[J]. Environ. Microbiol., 2015. 17: 2735-2746. | 
																													
																							| 21 | BRANDSTAETTER H, KENDRICK-JONES J, BUSS F. Myo1c regulates lipid raft recycling to control cell spreading, migration and Salmonella invasion[J]. J. Cell Sci., 2012, 125: 1991-2003. | 
																													
																							| 22 | KELLER N P, BENNETT J, TURNER G. Secondary metabolism: then, now and tomorrow[J]. Fungal Genet. Biol., 2011,48: 1-3. | 
																													
																							| 23 | KISTLER H C, BROZ K. Cellular compartmentalization of secondary metabolism[J/OL]. Front. Microbiol., 2015,6:68[2021-08-02]. . | 
																													
																							| 24 | DIAS P J, SÁ-CORREIA I. The drug: H+ antiporters of family 2 (DHA2), siderophore transporters (ARN) and glutathione: H+ antiporters (GEX) have a common evolutionary origin in hemiascomycete yeasts[J/OL].BMC Genom., 2013, doi:10.1186/1471-2164-14-901[2021-08-02]. . | 
																													
																							| 25 | MENKE J, DONG Y N, KISTLER H C. Fusarium graminearum Tri12p influences virulence to wheat and trichothecene accumulation[J]. Mol. Plant Microbe Interact., 2012, 25(11):1408-1418. | 
																													
																							| 26 | WANG Q, CHEN D, WU M, et al.. MFS transporters and GABA metabolism are involved in the self-defense against DON in Fusarium graminearum[J/OL]. Front. Plant Sci., 2018, 9: 438[2021-08-02]. . | 
																													
																							| 27 | ALEXANDER N J, MCCORMICK S P, HOHN T M. TRI12, a trichothecene efflux pump from Fusarium sporotrichioides: Gene isolation and expression in yeast[J/OL]. Mol. Gen. Genet., 1999,doi:10.1007/s004380051046[2021-08-02]. . | 
																													
																							| 28 | GARDINER D M, OSBORNE S, KAZAN K, et al.. Low pH regulates the production of deoxynivalenol by Fusarium graminearum[J]. Microbiology, 2009, 155: 3149-3156. | 
																													
																							| 29 | GARVEY G S, MCCORMICK S P, RAYMENT I. Structural and functional characterization of the TRI101 trichothecene 3-O-acetyltransferase from Fusarium sporotrichioides and Fusarium graminearum: kinetic insights to combating Fusarium head blight[J/OL]. J. Biol. Chem., 2008,doi:10.1074/jbc.M705752200[2021-08-02]. . | 
																													
																							| 30 | KIMURA M, SHINGU Y, YONEYAMA K, et al.. Features of tri101, the trichothecene 3-O-acetyltransferase gene, related to the self-defense mechanism in Fusarium graminearum[J/OL]. Biosci. Biotechnol. Biochem., 1998,doi:10.1271/bbb.62.1033[2021-08-02]. . | 
																													
																							| 31 | MCCORMICK S P, ALEXANDER N J, TRAPP S E, et al.. Disruption of TRI101, the gene encoding trichothecene 3-O- acetyltransferase, from Fusarium sporotrichioides[J]. Appl. Environ. Microbiol., 1999, 65(12):5252-5256. | 
																													
																							| 32 | ALEXANDER N. The TRI101 story: engineering wheat and barley to resist Fusarium head blight[J]. World Mycotoxin J., 2008,7: 31-37. | 
																													
																							| 33 | OHSATO S, OCHIAI-FUKUDA T, NISHIUCHI T, et al.. Transgenic rice plants expressing trichothecene 3-O-acetyltransferase show resistance to the Fusarium phytotoxin deoxynivalenol[J]. Plant Cell Rep., 2007,26:531-538. |