Current Biotechnology ›› 2024, Vol. 14 ›› Issue (4): 601-609.DOI: 10.19586/j.2095-2341.2024.0044
• Articles • Previous Articles Next Articles
					
													Jingsheng TAN1( ), Guantao ZHAO1, Li ZHU1, Yubin LI1,2(
), Guantao ZHAO1, Li ZHU1, Yubin LI1,2( )
)
												  
						
						
						
					
				
Received:2024-03-07
															
							
															
							
																	Accepted:2024-04-22
															
							
																	Online:2024-07-25
															
							
																	Published:2024-08-07
															
						Contact:
								Yubin LI   
													通讯作者:
					李玉斌
							作者简介:谭景胜 E-mail: jingsheng.tan@pku-iaas.edu.cn;
				
							基金资助:CLC Number:
Jingsheng TAN, Guantao ZHAO, Li ZHU, Yubin LI. The Sequence Characterization of Somatic Excision Footprints from Two-element Transposable System of rMrh/Mrh in Maize[J]. Current Biotechnology, 2024, 14(4): 601-609.
谭景胜, 赵官涛, 朱莉, 李玉斌. 玉米rMrh/Mrh双元转座系统体细胞转座特性分析[J]. 生物技术进展, 2024, 14(4): 601-609.
| 引物名称 | 引物序列(5′→3′) | 
|---|---|
| A1-1 | 5′-GCGAACGTTGGGAAGACGA-3′ | 
| A1-2 | 5′-CACCAGAGCCTCTACAGAT-3′ | 
| A1-3 | 5′-ATGAGCTGCACCTGCTTGAG-3′ | 
| A1-4 | 5′-TCAACTGAACTTCGACGACG-3′ | 
Table 1 Primers used in the experiment
| 引物名称 | 引物序列(5′→3′) | 
|---|---|
| A1-1 | 5′-GCGAACGTTGGGAAGACGA-3′ | 
| A1-2 | 5′-CACCAGAGCCTCTACAGAT-3′ | 
| A1-3 | 5′-ATGAGCTGCACCTGCTTGAG-3′ | 
| A1-4 | 5′-TCAACTGAACTTCGACGACG-3′ | 
| 材料编号 | 斑点籽粒/个 | 无斑点籽粒/个 | 分离比 | χ2 | χ20.05,1 | 
|---|---|---|---|---|---|
| YC8004-3 | 281 | 95 | 2.96 | 0.014 | 3.841 | 
| YC8004-20 | 231 | 75 | 3.08 | 0.039 | |
| YC8004-29 | 135 | 42 | 3.21 | 0.153 | |
| YC8004-33 | 184 | 60 | 3.06 | 0.021 | |
| YC8004-37 | 187 | 62 | 3.01 | 0.001 | 
Table 2 The phenotypic analysis of a1-rMrh/a1-rMrh;Mrh-5/+ self-pollinated progenies
| 材料编号 | 斑点籽粒/个 | 无斑点籽粒/个 | 分离比 | χ2 | χ20.05,1 | 
|---|---|---|---|---|---|
| YC8004-3 | 281 | 95 | 2.96 | 0.014 | 3.841 | 
| YC8004-20 | 231 | 75 | 3.08 | 0.039 | |
| YC8004-29 | 135 | 42 | 3.21 | 0.153 | |
| YC8004-33 | 184 | 60 | 3.06 | 0.021 | |
| YC8004-37 | 187 | 62 | 3.01 | 0.001 | 
| 材料编号 | 斑点籽粒/个 | 无斑点籽粒/个 | 分离比 | χ2 | χ20.05,1 | 
|---|---|---|---|---|---|
| YC8402-1 | 99 | 124 | 0.80 | 2.838 | 3.841 | 
| YC8402-34 | 96 | 114 | 0.84 | 1.554 | |
| YC8402-35 | 69 | 72 | 0.95 | 0.063 | |
| YC8402-38 | 117 | 120 | 0.98 | 0.037 | |
| YC8402-41 | 135 | 130 | 1.03 | 0.094 | |
| YC8402-43 | 88 | 68 | 1.29 | 2.607 | |
| YC8402-44 | 138 | 122 | 1.13 | 0.988 | 
Table 3 The phenotypic analysis of the test cross of a1-rMrh/a1-rMrh;Mrh-5/+×a1-rMrh/a1-rMrh;+/+
| 材料编号 | 斑点籽粒/个 | 无斑点籽粒/个 | 分离比 | χ2 | χ20.05,1 | 
|---|---|---|---|---|---|
| YC8402-1 | 99 | 124 | 0.80 | 2.838 | 3.841 | 
| YC8402-34 | 96 | 114 | 0.84 | 1.554 | |
| YC8402-35 | 69 | 72 | 0.95 | 0.063 | |
| YC8402-38 | 117 | 120 | 0.98 | 0.037 | |
| YC8402-41 | 135 | 130 | 1.03 | 0.094 | |
| YC8402-43 | 88 | 68 | 1.29 | 2.607 | |
| YC8402-44 | 138 | 122 | 1.13 | 0.988 | 
| 1 | MCCLINTOCK B. The production of homozygous deficient tissues with mutant characteristics by means of the aberrant mitotic behavior of ring-shaped chromosomes[J]. Genetics, 1938, 23(4): 315-376. | 
| 2 | MCCLINTOCK B. The behavior in successive nuclear divisions of a chromosome broken at meiosis[J]. Proc. Natl. Acad. Sci. USA, 1939, 25(8): 405-416. | 
| 3 | MCCLINTOCK B. The origin and behavior of mutable loci in maize[J]. Proc. Natl. Acad. Sci. USA, 1950, 36(6): 344-355. | 
| 4 | RAVINDRAN S. Barbara McClintock and the discovery of jumping genes[J]. Proc. Natl. Acad. Sci. USA, 2012, 109(50): 20198-20199. | 
| 5 | FINNEGAN D J. Eukaryotic transposable elements and genome evolution[J]. Trends Genet., 1989, 5(4): 103-107. | 
| 6 | 从春生,李玉斌.Mutator超家族转座子研究进展[J].遗传,2020,42(2):131-144. | 
| CONG C S, LI Y B. Progress on mutator superfamily[J]. Hereditas, 2020, 42(2): 131-144. | |
| 7 | WICKER T, SABOT F, HUA-VAN A, et al.. A unified classification system for eukaryotic transposable elements[J]. Nat. Rev. Genet., 2007, 8(12): 973-982. | 
| 8 | ROBERTSON D S. Characterization of a mutator system in maize[J]. Fundam. Mol. Mech. Mutagen., 1978, 51(1): 21-28. | 
| 9 | LISCH D. Mutator and MULE transposons[J]. Microbiol. Spectr., 2015, 3(2): MDNA3-MDNA0032-2014. | 
| 10 | CHALVET F, GRIMALDI C, KAPER F, et al.. Hop, an active Mutator-like element in the genome of the fungus Fusarium oxysporum [J]. Mol. Biol. Evol., 2003, 20(8): 1362-1375. | 
| 11 | SINGER T, YORDAN C, MARTIENSSEN R A. Robertson's Mutator transposons in A. thaliana are regulated by the chromatin-remodeling gene decrease in DNA methylation (DDM1)[J]. Genes Dev., 2001, 15(5): 591-602. | 
| 12 | GAO D. Identification of an active Mutator-like element (MULE) in rice (Oryza sativa)[J]. Mol. Genet. Genom., 2012, 287(3): 261-271. | 
| 13 | XU Z, YAN X, MAURAIS S, et al.. Jittery, a Mutator distant relative with a paradoxical mobile behavior: excision without reinsertion[J]. Plant Cell, 2004, 16(5): 1105-1114. | 
| 14 | LI Y, HARRIS L, DOONER H K. TED, an autonomous and rare maize transposon of the mutator superfamily with a high gametophytic excision frequency[J]. Plant Cell, 2013, 25(9): 3251-3265. | 
| 15 | LIU K, WESSLER S R. Functional characterization of the active Mutator-like transposable element, Muta1 from the mosquito Aedes aegypti [J/OL]. Mob. DNA, 2017, 8: 1[2024-06-12]. . | 
| 16 | MCCARTY D R, SETTLES A M, SUZUKI M, et al.. Steady-state transposon mutagenesis in inbred maize[J]. Plant J., 2005, 44(1): 52-61. | 
| 17 | LIANG L, ZHOU L, TANG Y, et al.. A sequence-indexed Mutator insertional library for maize functional genomics study[J]. Plant Physiol., 2019, 181(4): 1404-1414. | 
| 18 | MARCON C, ALTROGGE L, WIN Y N, et al.. BonnMu: a sequence-indexed resource of transposon-induced maize mutations for functional genomics studies[J]. Plant Physiol., 2020, 184(2): 620-631. | 
| 19 | RHOADES M M, DEMPSEY E. Chromatin elimination induced by the B chromosome of maize[J]. J. Hered., 1973, 64(1): 13-18. | 
| 20 | RHOADES M M, DEMPSEY E. The induction of mutable systems in plants with the high-loss mechanism[J]. Maize Genetics Coop. Newslet., 1982, 56: 21-26. | 
| 21 | SHEPHERD N S, RHOADES M M, DEMPSEY E. Genetic and molecular characterization of a-mrh-Mrh, a new mutable system of Zea mays [J]. Dev. Genet., 1989, 10(6): 507-519. | 
| 22 | LI Y, SEGAL G, WANG Q, et al.. Gene tagging with engineered Ds elements in maize[J]. Meth. Mol. Biol. Clifton N J, 2013, 1057: 83-99. | 
| 23 | LISCH D. How important are transposons for plant evolution?[J]. Nat. Rev. Genet., 2013, 14(1): 49-61. | 
| 24 | CHEN G, WANG R, JIANG Y, et al.. A novel active transposon creates allelic variation through altered translation rate to influence protein abundance[J]. Nucleic Acids Res., 2023, 51(2): 595-609. | 
| 25 | BAI L, BRUTNELL T P. The activator/dissociation transposable elements comprise a two-component gene regulatory switch that controls endogenous gene expression in maize[J]. Genetics, 2011, 187(3): 749-759. | 
| 26 | ELROUBY N, BUREAU T E. Modulation of auxin-binding protein 1 gene expression in maize and the teosintes by transposon insertions in its promoter[J]. Mol. Genet. Genom., 2012, 287(2): 143-153. | 
| 27 | CAI X, LIN R, LIANG J, et al.. Transposable element insertion: a hidden major source of domesticated phenotypic variation in Brassica rapa [J]. Plant Biotechnol. J., 2022, 20(7): 1298-1310. | 
| 28 | LISCH D, CHOMET P, FREELING M. Genetic characterization of the Mutator system in maize: behavior and regulation of Mu transposons in a minimal line[J]. Genetics, 1995, 139(4): 1777-1796. | 
| 29 | CONG C, TAN J, LI C, et al.. Cloning of maize TED transposon into Escherichia coli reveals the polychromatic sequence landscape of refractorily propagated plasmids[J/OL]. Int. J. Mol. Sci., 2022, 23(19): 11993[2024-06-12]. . | 
| 30 | ZHAO D, FERGUSON A, JIANG N. Transposition of a rice Mutator-like element in the yeast Saccharomyces cerevisiae [J]. Plant Cell, 2015, 27(1): 132-148. | 
| 31 | LI C, CONG C, LIU F, et al.. Abundance of transgene transcript variants associated with somatically active transgenic Helitrons from multiple T-DNA integration sites in maize[J/OL]. Int. J. Mol. Sci., 2023, 24(7): 6574[2024-06-12]. . | 
| 32 | BENNETZEN J L. The Mutator transposable element system of maize[J]. Curr. Top. Microbiol. Immunol., 1996, 204: 195-229. | 
| 33 | ROBERTSON D S, STINARD P S. Genetic analyses of putative two-element systems regulating somatic mutability in Mutator-induced aleurone mutants of maize[J]. Dev. Genet., 1989, 10(6): 482-506. | 
| 34 | 赵官涛,谭景胜,朱莉,等.玉米非自主性转座子rDt的体细胞转座序列特征[J].生物技术进展,2024,14(2):248-256. | 
| ZHAO G T, TAN J S, ZHU L, et al.. The sequence characterization of the somatic footprints upon the transposition of non-autonomous transposon rDt in maize[J]. Curr. Biotechnol., 2024, 14(2): 248-256. | |
| 35 | TAN B C, CHEN Z, SHEN Y, et al.. Identification of an active new mutator transposable element in maize[J]. G3, 2011, 1(4): 293-302. | 
| 36 | NISHIZAWA-YOKOI A, TOKI S. Precise genetic engineering with piggyBac transposon in plants[J]. Plant Biotechnol. 2023, 40(4): 255-262. | 
| 37 | ZHANG X, VAN TREECK B, HORTON C A, et al.. Harnessing eukaryotic retroelement proteins for transgene insertion into human safe-harbor loci[J/OL]. Nat. Biotechnol., 2024 [2024-06-12]. . | 
| [1] | Zhuoying LIU, Xiaojin ZHOU, Yanli HUANG, Sen PANG. Joint Transcriptome Analysis of Maize Under Salt Stress and MeJA Treatment [J]. Current Biotechnology, 2025, 15(2): 263-275. | 
| [2] | Qingyun ZHANG, Lei MA, Hua XU, Lian JIN, Junjie ZOU, Baobao WANG, Quanjia CHEN, Miaoyun XU. Mechanism of Lignin Content in Root System Affecting Salt Tolerance in Maize [J]. Current Biotechnology, 2025, 15(1): 67-77. | 
| [3] | Xin QI, Xinran LI, Yaning GUO, Dan WANG, Kai LI, Qiong WU, Liang LI. Comparison of Endogenous Genes in Maize Based on Digital PCR [J]. Current Biotechnology, 2025, 15(1): 78-85. | 
| [4] | Guantao ZHAO, Jingsheng TAN, Li ZHU, Yubin LI. The Sequence Characterization of the Somatic Footprints upon the Transposition of Non-autonomous Transposon rDt in Maize [J]. Current Biotechnology, 2024, 14(2): 248-256. | 
| [5] | Lingyan LI, Bing XIAO, Xudong ZHANG, Hua ZHANG, Ziyan CHEN, Haoqian WANG, Xiujie ZHANG, Hong CHEN, Jingang LIANG. Establishment and Standardization of Real-time PCR Method for Qualitative Detection of Genetically Modified Maize MON87411 [J]. Current Biotechnology, 2024, 14(2): 257-262. | 
| [6] | Min LI, Lei WANG, Junjie ZOU. Opportunities and Challenges for the Industrial Application of Transgenic Insect-resistant and Herbicide-tolerant Maize in China [J]. Current Biotechnology, 2023, 13(2): 157-165. | 
| [7] | Ke XIAO, Xiaojin ZHOU, Rumei CHEN, Sen PANG. Interactions Between ClassⅠand ClassⅡ NAS Proteins in Maize Using Bimolecular Fluorescence Complementation (BiFC) Assay [J]. Current Biotechnology, 2022, 12(5): 728-736. | 
| [8] | Xing DANG, Binwei ZHI, Kehao CAO, Tingting LIU, Biao CHEN, Yuanjie DING. Patent Analysis on Genetically Modified Maize Biological Breeding Technology and Development Suggestions [J]. Current Biotechnology, 2022, 12(4): 614-622. | 
| [9] | Hongtao WEN, Yang YANG, Yijia DING, Ran YUAN, Ruiying ZHANG, Zhiyuan XU, Jingang LIANG. Establishment of Qualitative PCR Detection of Transgenic Insect⁃resistant Maize CM8101 [J]. Current Biotechnology, 2022, 12(2): 248-255. | 
| [10] | Yuhan YUAN, Jiali FAN, Wenzhu YANG, Rumei CHEN. Photosynthetic Characteristics Studies of Three Maize Yellow Leaf Mutants [J]. Current Biotechnology, 2022, 12(1): 75-82. | 
| [11] | Shulei LI, Miaoyun XU, Hongyan ZHENG, Lei WANG. Establishment and Application of CRISPR/Cpf1‑mediated Base Editing System [J]. Current Biotechnology, 2021, 11(6): 732-740. | 
| [12] | REN Wen1, YANG Haixia2, CHEN Lizhu2, LI Yufeng2, LIU Ya1*. Establishment and Application of Nucleic Acid Chromatography for Rapid Detection of Transgenic Plants [J]. Curr. Biotech., 2020, 10(6): 680-687. | 
| [13] | WEN Hongtao1§,YANG Yang1§,DING Yijia1,YUAN Ran1,ZHANG Xiujie2,ZHANG Ruiying1*. Qualitative PCR Methods for the Detection of Transgenic Herbicide-tolerant Maize G1105E-823C [J]. Curr. Biotech., 2020, 10(6): 688-695. | 
| [14] | WU Wenyan§, LIU Xinxiang§, ZHOU Miaoyi*, LIU Jinxiang, LIU Ya. Establishment of Event-specific PCR Detection Method of Transgenic Maize Line 2A-5 [J]. Curr. Biotech., 2020, 10(4): 363-370. | 
| [15] | WANG Yali1,2, DENG Dexiang1,2, WANG Yijun1,2*. Recent Advances of G-protein Research in Maize [J]. Curr. Biotech., 2019, 9(1): 1-5. | 
| Viewed | ||||||
| Full text |  | |||||
| Abstract |  | |||||