Current Biotechnology ›› 2024, Vol. 14 ›› Issue (3): 433-441.DOI: 10.19586/j.2095-2341.2023.0162
• Articles • Previous Articles Next Articles
Hui ZHANG1(
), Bobo LIU1, Fengmei LI1(
), Jian CUI2(
)
Received:2023-12-14
Accepted:2024-01-24
Online:2024-05-25
Published:2024-06-18
Contact:
Fengmei LI,Jian CUI
通讯作者:
李凤梅,崔健
作者简介:张慧 E-mail: 824572941@qq.com;
基金资助:CLC Number:
Hui ZHANG, Bobo LIU, Fengmei LI, Jian CUI. Study on the Involvement of Auxin Signaling Pathway in Response to Powdery Mildew Stress in Pumpkin[J]. Current Biotechnology, 2024, 14(3): 433-441.
张慧, 刘愽愽, 李凤梅, 崔健. 生长素信号途径参与南瓜白粉菌胁迫的响应研究[J]. 生物技术进展, 2024, 14(3): 433-441.
| 基因 ID | log2|FoldChange| | 基因起始位点 | 基因终止位点 | 注释 |
|---|---|---|---|---|
| CmoCh01G000150 | 1.192 986 569 | 51 481 | 52 456 | 生长素相关蛋白 |
| CmoCh02G009000 | -2.729 158 581 | 5 550 636 | 5 554 600 | 生长素应答因子22 |
| CmoCh02G015780 | -1.085 102 287 | 9 109 056 | 9 112 669 | 生长素渠化 |
| CmoCh04G004950 | -2.026 235 227 | 2 470 212 | 2 472 488 | 生长素响应GH3样蛋白1 |
| CmoCh04G006880 | 1.535 353 461 | 3 408 834 | 3 412 302 | 生长素诱导蛋白 |
| CmoCh06G010560 | -2.044 779 387 | 8 210 781 | 8 214 108 | 生长素响应GH3样蛋白5 |
| CmoCh07G000800 | -1.672 989 912 | 500 794 | 505 922 | 生长素应答因子 |
| CmoCh07G002250 | -2.181 053 727 | 1 136 983 | 1 140 904 | 生长素抑制蛋白 |
| CmoCh07G007480 | 3.270 328 289 | 3 388 548 | 3 390 222 | 生长素应答因子36 |
| CmoCh08G001220 | -1.678 882 862 | 629 552 | 633 268 | 生长素反应蛋白IAA26 |
| CmoCh08G007660 | 3.895 043 450 | 4 840 255 | 4 840 875 | 生长素结合蛋白 |
| CmoCh08G011010 | -1.027 143 495 | 7 056 498 | 7 063 138 | 生长素渠化 |
| CmoCh09G006170 | 1.054 262 364 | 3 084 770 | 3 091 533 | 生长素渠化 |
| CmoCh10G006720 | -1.210 110 125 | 3 087 573 | 3 089 725 | 生长素反应蛋白IAA27 |
| CmoCh11G006340 | -1.374 547 937 | 3 047 847 | 3 051 459 | 生长素反应蛋白IAA27 |
| CmoCh14G013230 | -1.248 495 558 | 11 047 643 | 11 049 773 | 生长素反应蛋白IAA26 |
| CmoCh15G011730 | -3.433 307 646 | 8 165 466 | 8 169 541 | 生长素渠化 |
| CmoCh15G013610 | -1.282 714 907 | 9 303 666 | 9 310 054 | 生长素应答因子9 |
| CmoCh16G005850 | -1.222 754 998 | 2 822 610 | 2 826 352 | 生长素应答因子9 |
| CmoCh17G013690 | -1.441 604 240 | 10 631 575 | 10 632 190 | 生长素反应蛋白 |
| CmoCh19G000230 | 1.584 356 252 | 139 153 | 141 383 | 生长素渠化 |
| CmoCh19G007170 | 2.359 833 611 | 7 501 456 | 7 501 755 | 生长素反应蛋白SAUR50 |
| CmoCh19G007210 | 1.222 892 554 | 7 514 737 | 7 515 027 | 生长素诱导蛋白 |
| CmoCh20G005090 | -1.540 231 132 | 2 433 984 | 2 440 115 | 生长素应答因子4 |
| CmoCh20G008040 | 2.795 275 878 | 3 960 038 | 3 962 188 | 生长素反应蛋白SAUR24 |
Table 1 Differential expression levels and annotation information of genes related to the IAA signaling pathway
| 基因 ID | log2|FoldChange| | 基因起始位点 | 基因终止位点 | 注释 |
|---|---|---|---|---|
| CmoCh01G000150 | 1.192 986 569 | 51 481 | 52 456 | 生长素相关蛋白 |
| CmoCh02G009000 | -2.729 158 581 | 5 550 636 | 5 554 600 | 生长素应答因子22 |
| CmoCh02G015780 | -1.085 102 287 | 9 109 056 | 9 112 669 | 生长素渠化 |
| CmoCh04G004950 | -2.026 235 227 | 2 470 212 | 2 472 488 | 生长素响应GH3样蛋白1 |
| CmoCh04G006880 | 1.535 353 461 | 3 408 834 | 3 412 302 | 生长素诱导蛋白 |
| CmoCh06G010560 | -2.044 779 387 | 8 210 781 | 8 214 108 | 生长素响应GH3样蛋白5 |
| CmoCh07G000800 | -1.672 989 912 | 500 794 | 505 922 | 生长素应答因子 |
| CmoCh07G002250 | -2.181 053 727 | 1 136 983 | 1 140 904 | 生长素抑制蛋白 |
| CmoCh07G007480 | 3.270 328 289 | 3 388 548 | 3 390 222 | 生长素应答因子36 |
| CmoCh08G001220 | -1.678 882 862 | 629 552 | 633 268 | 生长素反应蛋白IAA26 |
| CmoCh08G007660 | 3.895 043 450 | 4 840 255 | 4 840 875 | 生长素结合蛋白 |
| CmoCh08G011010 | -1.027 143 495 | 7 056 498 | 7 063 138 | 生长素渠化 |
| CmoCh09G006170 | 1.054 262 364 | 3 084 770 | 3 091 533 | 生长素渠化 |
| CmoCh10G006720 | -1.210 110 125 | 3 087 573 | 3 089 725 | 生长素反应蛋白IAA27 |
| CmoCh11G006340 | -1.374 547 937 | 3 047 847 | 3 051 459 | 生长素反应蛋白IAA27 |
| CmoCh14G013230 | -1.248 495 558 | 11 047 643 | 11 049 773 | 生长素反应蛋白IAA26 |
| CmoCh15G011730 | -3.433 307 646 | 8 165 466 | 8 169 541 | 生长素渠化 |
| CmoCh15G013610 | -1.282 714 907 | 9 303 666 | 9 310 054 | 生长素应答因子9 |
| CmoCh16G005850 | -1.222 754 998 | 2 822 610 | 2 826 352 | 生长素应答因子9 |
| CmoCh17G013690 | -1.441 604 240 | 10 631 575 | 10 632 190 | 生长素反应蛋白 |
| CmoCh19G000230 | 1.584 356 252 | 139 153 | 141 383 | 生长素渠化 |
| CmoCh19G007170 | 2.359 833 611 | 7 501 456 | 7 501 755 | 生长素反应蛋白SAUR50 |
| CmoCh19G007210 | 1.222 892 554 | 7 514 737 | 7 515 027 | 生长素诱导蛋白 |
| CmoCh20G005090 | -1.540 231 132 | 2 433 984 | 2 440 115 | 生长素应答因子4 |
| CmoCh20G008040 | 2.795 275 878 | 3 960 038 | 3 962 188 | 生长素反应蛋白SAUR24 |
| 基因ID | 甲基化类型 | 甲基化区域 | 基因ID | 甲基化类型 | 甲基化区域 |
|---|---|---|---|---|---|
| CmoCh01G010370 | CHH | 内含子 | CmoCh13G008530 | CHH | 启动子 |
| CmoCh02G003140 | CHH | 内含子 | CmoCh14G006160 | CHH | 内含子 |
| CmoCh03G012750 | CHH | 启动子 | CmoCh14G006150 | CHH | 内含子 |
| CmoCh04G007210 | CHH | 启动子 | CmoCh14G013230 | CHH | 内含子 |
| CmoCh04G029470 | CHH | 启动子 | CmoCh14G015800 | CHH | 启动子 |
| CmoCh04G030360 | CHH | 启动子 | CmoCh14G018090 | CHH | 启动子 |
| CmoCh05G007670 | CHH, CG | 内含子, 外显子 | CmoCh15G001380 | CHH | 内含子 |
| CmoCh05G008000 | CHH | 启动子 | CmoCh15G009810 | CHH | 启动子 |
| CmoCh07G002150 | CHH | 启动子 | CmoCh17G001350 | CHH | 启动子 |
| CmoCh07G009450 | CHH | 启动子 | CmoCh17G011930 | CG, CHH | 启动子 |
| CmoCh07G010990 | CHH | 启动子 | CmoCh18G004680 | CHH | 内含子 |
| CmoCh09G001100 | CHH | 启动子 | CmoCh18G010050 | CHH | 内含子 |
| CmoCh09G004620 | CHH | 内含子 | CmoCh19G001290 | CHH | 启动子 |
| CmoCh10G005700 | CHH | 启动子 | CmoCh19G007160 | CHH | 启动子 |
| CmoCh11G003520 | CG | 外显子 | CmoCh19G007170 | CHH | 启动子 |
| CmoCh11G007400 | CG | 启动子 | CmoCh19G007180 | CHH | 启动子 |
| CmoCh11G015800 | CHH | 启动子 | CmoCh19G007290 | CG | 启动子 |
| CmoCh11G017120 | CHH | 启动子 | CmoCh19G007400 | CHH | 内含子, 启动子 |
| CmoCh11G017130 | CHH | 启动子 | CmoCh20G005420 | CHH | 启动子 |
| CmoCh11G017140 | CHH | 启动子 | CmoCh20G007770 | CHH | 启动子 |
| CmoCh11G017180 | CHH | 启动子 | CmoCh20G007790 | CHH | 启动子 |
| CmoCh11G017330 | CG, CHG | 内含子, 外显子 | CmoCh20G007780 | CHH | 内含子 |
| CmoCh11G017660 | CHH | 启动子 | CmoCh20G008020 | CG | 启动子 |
| CmoCh12G001120 | CHH | 内含子, 启动子 | CmoCh20G008010 | CG | 启动子 |
| CmoCh12G003660 | CHH | 启动子 | CmoCh20G008070 | CHH | 启动子 |
| CmoCh12G011430 | CHH | 启动子 | CmoCh20G008080 | CHH | 启动子 |
| CmoCh12G013660 | CHH | 启动子 |
Table 2 Methylation types and regions of genes to related IAA signaling pathway
| 基因ID | 甲基化类型 | 甲基化区域 | 基因ID | 甲基化类型 | 甲基化区域 |
|---|---|---|---|---|---|
| CmoCh01G010370 | CHH | 内含子 | CmoCh13G008530 | CHH | 启动子 |
| CmoCh02G003140 | CHH | 内含子 | CmoCh14G006160 | CHH | 内含子 |
| CmoCh03G012750 | CHH | 启动子 | CmoCh14G006150 | CHH | 内含子 |
| CmoCh04G007210 | CHH | 启动子 | CmoCh14G013230 | CHH | 内含子 |
| CmoCh04G029470 | CHH | 启动子 | CmoCh14G015800 | CHH | 启动子 |
| CmoCh04G030360 | CHH | 启动子 | CmoCh14G018090 | CHH | 启动子 |
| CmoCh05G007670 | CHH, CG | 内含子, 外显子 | CmoCh15G001380 | CHH | 内含子 |
| CmoCh05G008000 | CHH | 启动子 | CmoCh15G009810 | CHH | 启动子 |
| CmoCh07G002150 | CHH | 启动子 | CmoCh17G001350 | CHH | 启动子 |
| CmoCh07G009450 | CHH | 启动子 | CmoCh17G011930 | CG, CHH | 启动子 |
| CmoCh07G010990 | CHH | 启动子 | CmoCh18G004680 | CHH | 内含子 |
| CmoCh09G001100 | CHH | 启动子 | CmoCh18G010050 | CHH | 内含子 |
| CmoCh09G004620 | CHH | 内含子 | CmoCh19G001290 | CHH | 启动子 |
| CmoCh10G005700 | CHH | 启动子 | CmoCh19G007160 | CHH | 启动子 |
| CmoCh11G003520 | CG | 外显子 | CmoCh19G007170 | CHH | 启动子 |
| CmoCh11G007400 | CG | 启动子 | CmoCh19G007180 | CHH | 启动子 |
| CmoCh11G015800 | CHH | 启动子 | CmoCh19G007290 | CG | 启动子 |
| CmoCh11G017120 | CHH | 启动子 | CmoCh19G007400 | CHH | 内含子, 启动子 |
| CmoCh11G017130 | CHH | 启动子 | CmoCh20G005420 | CHH | 启动子 |
| CmoCh11G017140 | CHH | 启动子 | CmoCh20G007770 | CHH | 启动子 |
| CmoCh11G017180 | CHH | 启动子 | CmoCh20G007790 | CHH | 启动子 |
| CmoCh11G017330 | CG, CHG | 内含子, 外显子 | CmoCh20G007780 | CHH | 内含子 |
| CmoCh11G017660 | CHH | 启动子 | CmoCh20G008020 | CG | 启动子 |
| CmoCh12G001120 | CHH | 内含子, 启动子 | CmoCh20G008010 | CG | 启动子 |
| CmoCh12G003660 | CHH | 启动子 | CmoCh20G008070 | CHH | 启动子 |
| CmoCh12G011430 | CHH | 启动子 | CmoCh20G008080 | CHH | 启动子 |
| CmoCh12G013660 | CHH | 启动子 |
| 1 | PÉREZ-GARCÍA A, ROMERO D, FERNÁNDEZ-ORTUÑO D, et al.. The powdery mildew fungus Podosphaera fusca (synonym Podosphaera xanthii), a constant threat to cucurbits[J]. Mol. Plant Pathol., 2009, 10(2): 153-160. |
| 2 | BABADOOST M, SULLEY S, XIANG Y. Sensitivities of cucurbit powdery mildew fungus ( Podosphaera xanthii ) to fungicides[J]. Plant Hlth. Prog., 2020, 21:272-277. |
| 3 | BADRI A M, BAE I, LEE S. Marker-assisted evaluation of two powdery mildew resistance candidate genes in korean cucumber inbred lines[J]. Agronomy, 2021, 11(11):2191.?补 |
| 4 | 孙海,王晓青,李云龙,等.寡雄腐霉施用时期对设施黄瓜霜霉病的防治试验[J].生物技术进展,2014,4(1):63-65. |
| SUN H, WANG X Q, LI Y L, et al.. Evaluation of application time for Pythium oligandrum against cucumber downy mildew in greenhouse[J]. Curr. Biotechnol., 2014, 4(1): 63-65. | |
| 5 | 吴星波,郝俊杰,张晓艳,等.普通菜豆抗白粉病基因SCAR标记鉴定[J].生物技术进展,2013,3(5):357-362. |
| WU X B, HAO J J, ZHANG X Y, et al.. Identification of powdery mildew resistant genes based on SCAR markers in common bean (Phaseolus vulgaris L.)[J]. Curr. Biotechnol., 2013, 3(5): 357-362. | |
| 6 | 冯寒骞,李超.生长素信号转导研究进展[J].生物技术通报,2018,34(7):24-30. |
| FENG H Q, LI C. Research advances of auxin signal transduction[J]. Biotechnol. Bull., 2018, 34(7): 24-30. | |
| 7 | DHARMASIRI N, DHARMASIRI S, ESTELLE M. The F-box protein TIR1 is an auxin receptor[J]. Nature, 2005, 435: 441-445. |
| 8 | KEPINSKI S, LEYSER O. The Arabidopsis F-box protein TIR1 is an auxin receptor[J]. Nature, 2005, 435: 446-451. |
| 9 | TAN X, CALDERON-VILLALOBOS L I A, SHARON M, et al.. Mechanism of auxin perception by the TIR1 ubiquitin ligase[J]. Nature, 2007, 446: 640-645. |
| 10 | SALEHIN M, BAGCHI R, ESTELLE M. SCFTIR1/AFB-based auxin perception: mechanism and role in plant growth and development[J]. Plant Cell, 2015, 27(1): 9-19. |
| 11 | GRAY W M, KEPINSKI S, ROUSE D, et al.. Auxin regulates SCFTIR1-dependent degradation of AUX/IAA proteins[J]. Nature, 2001, 414: 271-276. |
| 12 | CHEN M, NIE G, YANG L, et al.. Homeotic transformation from stamen to petal in Lilium is associated with MADS-box genes and hormone signal transduction[J]. Plant Growth Regul., 2021, 95(1): 49-64. |
| 13 | JIN L, QIN Q, WANG Y, et al.. Rice dwarf virus P2 protein hijacks auxin signaling by directly targeting the rice OsIAA10 protein, enhancing viral infection and disease development[J/OL]. PLoS Pathog., 2016, 12(9): e1005847[2024-03-15]. . |
| 14 | MEHMOOD A, HUSSAIN A, IRSHAD M, et al.. IAA and flavonoids modulates the association between maize roots and phytostimulant endophytic Aspergillus fumigatus greenish[J]. J. Plant Interact., 2018, 13(1):532-542. |
| 15 | HE Y, ZHANG T, SUN Y, et al.. Exogenous IAA alleviates arsenic toxicity to rice and reduces arsenic accumulation in rice grains[J]. J. Plant Growth. Regul., 2022, 41(2): 734-741. |
| 16 | WEN T, DONG L, WANG L, et al.. Changes in root architecture and endogenous hormone levels in two Malus rootstocks under alkali stress[J]. Sci. Hortic. Amsterdam., 2018, 235:198-204. |
| 17 | NAVARRO L, DUNOYER P, JAY F, et al.. A plant miRNA contributes to antibacterial resistance by repressing auxin signaling[J]. Science, 2006, 312(5772): 436-439. |
| 18 | ZHANG Z, LI Q, LI Z, et al.. Dual regulation role of GH3.5 in salicylic acid and auxin signaling during Arabidopsis-Pseudomonas syringae interaction[J]. Plant Physiol., 2007, 145(2): 450-464. |
| 19 | PADMANABHAN M S, SHIFERAW H, CULVER J N. The Tobacco mosaic virus replicase protein disrupts the localization and function of interacting Aux/IAA proteins[J]. Mol. Plant Microbe Interact., 2006, 19(8): 864-873. |
| 20 | SUN Y, FAN M, HE Y. DNA methylation analysis of the Citrullus lanatus response to Cucumber GreenMottle mosaic virus infection by whole-genome bisulfite sequencing[J/OL]. Genes Basel., 2019, 10(5): e344[2024-03-15]. . |
| 21 | RAMBANI A, RICE J H, LIU J, et al.. The methylome of soybean roots during the compatible interaction with the soybean cyst nematode[J]. Plant Physiol., 2015, 168(4): 1364-1377. |
| 22 | 徐妍.灰斑病菌胁迫对大豆生理生化和DNA甲基化的影响[D].哈尔滨:哈尔滨师范大学,2015. |
| 23 | CAO X, ZHAI X, ZHAO Z, et al.. Genome-wide DNA methylation analysis of paulownia with phytoplasma infection[J/OL]. Gene, 2020, 755: 144905[2024-03-15]. . |
| 24 | WANG S, YAN W, YANG X, et al.. Comparative methylome reveals regulatory roles of DNA methylation in melon resistance to Podosphaera xanthii [J/OL]. Plant Sci., 2021, 309: 110954[2024-03-15]. . |
| 25 | ZITTER T A. Compendium of Cucurbit Diseases[M]. US: Amer Phytopathological Society, 1996. |
| 26 | 方汉顺,谢永盾,曾伟伟,等.小麦矮秆突变体jm22d响应赤霉素处理的转录组学分析[J].生物技术进展,2020,10(5):503-516. |
| FANG H S, XIE Y D, ZENG W W, et al.. The transcriptome analysis of wheat dwarf mutant jm22d responding to GA treatment[J]. Curr. Biotechnol., 2020, 10(5): 503-516. | |
| 27 | MO H J, SUN Y X, ZHU X L, et al.. Cotton S-adenosylmethionine decarboxylase-mediated spermine biosynthesis is required for salicylic acid- and leucine-correlated signaling in the defense response to Verticillium dahliae [J]. Planta, 2016, 243(4): 1023-1039. |
| 28 | PARK S Y, FUNG P, NISHIMURA N, et al.. Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins[J]. Science, 2009, 324(5930): 1068-1071. |
| 29 | WOODWARD A W, BARTEL B. Auxin: regulation, action, and interaction[J]. Ann. Bot., 2005, 95(5): 707-735. |
| 30 | 陈中惠,李景蕻.外源植物激素对高温胁迫下水培绿萝耐热性的影响[J].生物技术进展,2023,13(5):742-747. |
| CHEN Z H, LI J H. Effects of exogenous phytohormones on heat tolerance of Epipremnum aureum under hydroponic culture[J]. Curr. Biotechnol., 2023, 13(5): 742-747. | |
| 31 | LISCUM E, REED J W. Genetics of Aux/IAA and ARF action in plant growth and development[J]. Plant Mol. Biol., 2002, 49(3): 387-400. |
| 32 | HAGEN G, GUILFOYLE T. Auxin-responsive gene expression: genes, promoters and regulatory factors[J]. Plant Mol. Biol., 2002, 49(3-4): 373-385. |
| 33 | STASWICK P E, SERBAN B, ROWE M, et al.. Characterization of an Arabidopsis enzyme family that conjugates amino acids to indole-3-acetic acid [J]. Plant Cell, 2005, 17(2): 616-627. |
| 34 | NEWMAN T C, OHME-TAKAGI M, TAYLOR C B, et al.. DST sequences, highly conserved among plant SAUR genes, target reporter transcripts for rapid decay in tobacco[J]. Plant Cell, 1993, 5(6): 701-714. |
| 35 | LI Z G, CHEN H W, LI Q T, et al.. Three SAUR proteins SAUR 76, SAUR77 and SAUR78 promote plant growth in Arabidopsis[J/OL]. Sci. Rep., 2015, 5: 12477[2024-03-15]. . |
| 36 | DENG G, HUANG X, XIE L, et al.. Identification and expression of SAUR genes in the CAM plant Agave [J/OL]. Genes Basel., 2019, 10(7): e555[2024-03-15]. . |
| 37 | LIU Y, XIAO L, CHI J, et al.. Genome-wide identification and expression of SAUR gene family in peanut (Arachis hypogaea L.) and functional identification of AhSAUR3 in drought tolerance[J/OL]. BMC Plant Biol., 2022, 22(1): 178[2024-03-15]. . |
| [1] | AYELHAN·Haysa, Fei JIAO, Hong LIU, ANASI·Hudelati, Yubang SHEN. Integrating GWAS and Transcriptome Profiling to Identify SNP Markers Linked to High-temperature Tolerance in Esox lucius [J]. Current Biotechnology, 2025, 15(3): 432-445. |
| [2] | Zhuoying LIU, Xiaojin ZHOU, Yanli HUANG, Sen PANG. Joint Transcriptome Analysis of Maize Under Salt Stress and MeJA Treatment [J]. Current Biotechnology, 2025, 15(2): 263-275. |
| [3] | Yezi MA, Meijuan XIA, Cuicui LIU, Hongtao WANG, Jiaxi ZHOU. Comparative Analysis of Platelet Transcriptome and Proteome Changes in SARS-CoV2 Omicron Infection [J]. Current Biotechnology, 2024, 14(4): 649-656. |
| [4] | Hongmei QIAO. Transcriptome Analysis of the Terrestrial Plant Carallia brachiata from Rhizophoraceae [J]. Current Biotechnology, 2024, 14(2): 228-236. |
| [5] | Caihong WANG, Yuhan SHAO, Mengyuan JIANG. The Mechanisms of IL-17 Inhibiting Pseudomonas aeruginosa Infection on Lung Epithelial Cells [J]. Current Biotechnology, 2024, 14(2): 304-311. |
| [6] | Qinqin LIU, Baiming HUANG, Yezi MA, Cuicui LIU, Hongtao WANG, Jiaxi ZHOU. Comparative Analysis of Megakaryocyte and Platelet Transcriptome Changes in Acute Infection [J]. Current Biotechnology, 2023, 13(3): 465-472. |
| [7] | Dongao LI, Huiquan LIU, Qinhu WANG. Research Progress on Wheat Transcriptomes Responsive to Fusarium graminearum Infection [J]. Current Biotechnology, 2021, 11(5): 610-617. |
| [8] | FANG Hanshun1,2, XIE Yongdun2, ZENG Weiwei2, GUO Huijun2, XIONG Hongchun2, ZHAO Linshu2, GU Jiayu2, XU Yanhao1*, LIU Luxiang2*. The Transcriptome Analysis of Wheat Dwarf Mutant jm22d Responding to GA Treatment [J]. Curr. Biotech., 2020, 10(5): 503-516. |
| [9] | HUANG Chunmeng1,2, ZHU Pengyu1, WANG Zhi1, WANG Chenguang1, DU Zhixin3, WEI Shuang4, ZHANG Yongjiang1, FU Wei1*. Progress on RNAi-based Transgenic Plants [J]. Curr. Biotech., 2020, 10(1): 1-9. |
| [10] | GU Pei-yun1, LU Run-gang1, WANG Bu-yun2, SUN Hai2, YANG Jin-li1, JIAO Xue-xia1, LI Yun-long2* . Study on Control Efficiency of Electrolyzed Functional Water Against Hot Pepper Powdery Mildew [J]. Curr. Biotech., 2016, 6(1): 71-74. |
| [11] | WU Xing-bo1,2, HAO Jun-jie1*, ZHANG Xiao-yan1, WAN Shu-wei1, LI Hong-wei1, SHAO Yang1, SUN Ji-lu1. Identification of Powdery Mildew Resistant Genes based on SCAR Markers in Common Bean (Phaseolus vulgaris L.) [J]. Curr. Biotech., 2013, 3(5): 357-362. |
| [12] | QIN Tai-chen. A Summarized Opinion on Application of Crop Male Sterility in Plant Breeding [J]. journal1, 2011, 1(2): 84-89. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||