| 1 |
KAMLE M, MAHATO D K, DEVI S, et al.. Fumonisins: impact on agriculture, food, and human health and their management strategies[J/OL]. Toxins, 2019, 11(6): 328[2023-10-20]. .
|
| 2 |
JONES R E, HUMPHREY T C. Homologous recombination and nonhomologous end-joining repair in yeast[M]. 2nd ed. New York: Academic Press, 2019: 2715-2726.
|
| 3 |
HABER J E. Transpositions and translocations induced by site-specific double-strand breaks in budding yeast[J]. DNA Repair, 2006, 5(9-10): 998-1009.
|
| 4 |
KITO H, FUJIKAWA T, MORIWAKI A, et al.. MgLig4, a homolog of Neurospora crassa Mus-53 (DNA ligase IV), is involved in, but not essential for, non-homologous end-joining events in Magnaporthe grisea [J]. Fungal Genet. Biol., 2008, 45(12): 1543-1551.
|
| 5 |
XU D, ZHAO H. Pathway choice for DNA double strand break repair[J]. Sci. Sin. Vitae, 2021, 51(1): 56-69.
|
| 6 |
GUHA S, BHAUMIK S R. Transcription-coupled DNA double-strand break repair[J/OL]. DNA Repair, 2022, 109: 103211[2024-04-08]. .
|
| 7 |
D'ADDA DI FAGAGNA F, HANDE M P, TONG W M, et al.. Effects of DNA nonhomologous end-joining factors on telomere length and chromosomal stability in mammalian cells[J]. Curr. Biol., 2001, 11(15): 1192-1196.
|
| 8 |
PRYOR J M, CONLIN M P, CARVAJAL-GARCIA J, et al.. Ribonucleotide incorporation enables repair of chromosome breaks by nonhomologous end joining[J]. Science, 2018, 361(6407): 1126-1129.
|
| 9 |
NINOMIYA Y, SUZUKI K, ISHII C, et al.. Highly efficient gene replacements in Neurospora strains deficient for nonhomologous end-joining[J]. Proc. Natl. Acad. Sci. USA, 2004, 101(33): 12248-12253.
|
| 10 |
WEYDA I, YANG L, VANG J, et al.. A comparison of Agrobacterium-mediated transformation and protoplast-mediated transformation with CRISPR/Cas9 and bipartite gene targeting substrates, as effective gene targeting tools for Aspergillus carbonarius [J]. J. Microbiol. Meth., 2017, 135: 26-34.
|
| 11 |
KRAPPMANN S, SASSE C, BRAUS G H. Gene targeting in Aspergillus fumigatus by homologous recombination is facilitated in a nonhomologous end-joining-deficient genetic background[J]. Eukaryot. Cell, 2006, 5(1): 212-215.
|
| 12 |
MEYER V, ARENTSHORST M, EL-GHEZAL A, et al.. Highly efficient gene targeting in the Aspergillus niger kusA mutant[J]. J. Biotechnol., 2007, 128(4): 770-775.
|
| 13 |
VILLALBA F, COLLEMARE J, LANDRAUD P, et al.. Improved gene targeting in Magnaporthe grisea by inactivation of MgKU80 required for non-homologous end joining[J]. Fungal Genet. Biol., 2008, 45(1): 68-75.
|
| 14 |
CHANG P K, SCHARFENSTEIN L L, WEI Q, et al.. Development and refinement of a high-efficiency gene-targeting system for Aspergillus flavus [J]. J. Microbiol. Meth., 2010, 81(3): 240-246.
|
| 15 |
PÖGGELER S, KÜCK U. Highly efficient generation of signal transduction knockout mutants using a fungal strain deficient in the mammalian Ku70 ortholog[J]. Gene, 2006, 378: 1-10.
|
| 16 |
LI Z H, DU C M, ZHONG Y H, et al.. Development of a highly efficient gene targeting system allowing rapid genetic manipulations in Penicillium decumbens [J]. Appl. Microbiol. Biotechnol., 2010, 87(3): 1065-1076.
|
| 17 |
XI K, SHAN L, YANG Y, et al.. Species diversity and chemotypes of Fusarium species associated with maize stalk rot in Yunnan Province of Southwest China[J/OL]. Front. Microbiol., 2021, 12: 652062[2021-10-20]. .
|
| 18 |
MARTINS M P, GOMES E V, SANCHES P R, et al.. Mus-52 disruption and metabolic regulation in Neurospora crassa: transcriptional responses to extracellular phosphate availability[J/OL]. PLoS ONE, 2018, 13(4): e0195871[2023-10-30]. .
|
| 19 |
ZHOU J, LI S M. Conversion of viridicatic acid to crustosic acid by cytochrome P450 enzyme-catalysed hydroxylation and spontaneous cyclisation[J]. Appl. Microbiol. Biotechnol., 2021, 105(24): 9181-9189.
|
| 20 |
FENG J, LI W, HWANG S F, et al.. Enhanced gene replacement frequency in KU70 disruption strain of Stagonospora nodorum [J]. Microbiol. Res., 2012, 167(3): 173-178.
|
| 21 |
HOFF B, KAMEREWERD J, SIGL C, et al.. Homologous recombination in the antibiotic producer Penicillium chrysogenum: strain DeltaPcku70 shows up-regulation of genes from the HOG pathway[J]. Appl. Microbiol. Biotechnol., 2010, 85(4): 1081-1094.
|
| 22 |
TAKAHASHI T, MASUDA T, KOYAMA Y. Enhanced gene targeting frequency in Ku70 and Ku80 disruption mutants of Aspergillus sojae and Aspergillus oryzae [J]. Mol. Genet. Genom., 2006, 275(5): 460-470.
|
| 23 |
许铭,尹志远,高明煜,等.苹果树腐烂病菌高效基因敲除受体菌株ΔVmKu80的构建[J].西北农业学报,2016,25(2):298-305.
|
|
XU M, YIN Z Y, GAO M Y, et al.. Construction of enhanced gene deletion frequency recipient strain ΔVmKu80 in Valsa mali[J]. Acta Agric. Boreali Occidentalis Sin., 2016, 25(2): 298-305.
|
| 24 |
QI X, SU X, GUO H, et al.. A Ku70 null mutant improves gene targeting frequency in the fungal pathogen Verticillium dahliae [J]. World J. Microbiol. Biotechnol., 2015, 31(12): 1889-1897.
|
| 25 |
HAARMANN T, LORENZ N, TUDZYNSKI P. Use of a nonhomologous end joining deficient strain (Deltaku70) of the ergot fungus Claviceps purpurea for identification of a nonribosomal peptide synthetase gene involved in ergotamine biosynthesis[J]. Fungal Genet. Biol., 2008, 45(1): 35-44.
|
| 26 |
WANG H, PERRAULT A R, TAKEDA Y, et al.. Biochemical evidence for Ku-independent backup pathways of NHEJ[J/OL]. Nucleic Acids Res., 2020, 48(9): 5200[2023-10-20]. .
|
| 27 |
DAI Z, POMRANING K R, DENG S, et al.. Deletion of the KU70 homologue facilitates gene targeting in Lipomyces starkeyi strain NRRL Y-11558[J]. Curr. Genet., 2019, 65(1): 269-282.
|