| 1 | 刘仙花, 余英豪, 叶显宗. 林奇综合征临床病理筛查的相关进展[J]. 实用肿瘤杂志, 2018,33(3):277-282. | 
																													
																							| 2 | 王晓乐, 何淼龙, 宁方玲, 等. 林奇综合征的基因学、诊断及治疗相关进展[J]. 中国医药科学, 2021,11(7):56-59. | 
																													
																							| 3 | WATSON P, VASEN H, MECKLIN J P, et al.. The risk of extra-colonic, extra-endometrial cancer in the Lynch syndrome[J]. Int. J. Cancer, 2008,123(2):444-449. | 
																													
																							| 4 | 谢天赐, 徐向上. 林奇综合征发生发展的研究进展[J]. 现代肿瘤医学, 2022,30(6):1102-1108. | 
																													
																							| 5 | MOLLER P, SEPPALA T, BERNSTEIN I, et al.. Cancer incidence and survival in Lynch syndrome patients receiving colonoscopic and gynaecological surveillance: first report from the prospective Lynch syndrome database[J]. Gut, 2017,66(3):464-472. | 
																													
																							| 6 | The Cancer Genome Atlas Network.Comprehensive molecular characterization of human colon and rectal cancer[J]. Nature, 2012,487(7407):330-337. | 
																													
																							| 7 | SCHWITALLE Y, KLOOR M, EIERMANN S, et al.. Immune response against frameshift-induced neopeptides in HNPCC patients and healthy HNPCC mutation carriers[J]. Gastroenterology, 2008,134(4):988-997. | 
																													
																							| 8 | EDGAR R, DOMRACHEV M, LASH A E. Gene expression omnibus: NCBI gene expression and hybridization array data repository[J]. Nucl. Acids Res., 2002,30(1):207-210. | 
																													
																							| 9 | ORY L, NAZIH E H, DAOUD S, et al.. Targeting bioactive compounds in natural extracts-development of a comprehensive workflow combining chemical and biological data[J]. Anal. Chim. Acta, 2019,1070:29-42. | 
																													
																							| 10 | SZKLARCZYK D, GABLE A L, NASTOU K C, et al.. The STRING database in 2021: customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets[J]. Nucl. Acids Res, 2021,49(D1):D605-D612. | 
																													
																							| 11 | JANG B S, CHANG J H. Socioeconomic status and survival outcomes in elderly cancer patients: a national health insurance service-elderly sample cohort study[J]. Cancer Med., 2019,8(7):3604-3613. | 
																													
																							| 12 | LIU J, ZHOU S, LI S, et al.. Eleven genes associated with progression and prognosis of endometrial cancer (EC) identified by comprehensive bioinformatics analysis[J/OL]. Cancer Cell Int., 2019,19:136[2022-12-25]. . | 
																													
																							| 13 | HUANG D W, SHERMAN B T, TAN Q, et al.. The DAVID gene functional classification tool: a novel biological module-centric algorithm to functionally analyze large gene lists[J]. Genome Biol., 2007,8(9):1-16. | 
																													
																							| 14 | 文家治, 朱腾, 韩春晨, 等. 易感基因在林奇综合征相关结直肠癌、腺瘤筛查中应用研究[J]. 临床军医杂志, 2018,46(8):972-973. | 
																													
																							| 15 | 许赟, 徐烨. 林奇综合征的病因研究及临床诊治现状[J]. 医学新知杂志, 2019,29(6):585-588. | 
																													
																							| 16 | SINICROPE F A. Lynch Syndrome-associated colorectal cancer[J]. N. Engl. J. Med., 2018,379(8):764-773. | 
																													
																							| 17 | 李小会, 赵文婕, 刘变英. 林奇综合征诊疗进展[J]. 中华结直肠疾病电子杂志, 2016,5(6):512-517. | 
																													
																							| 18 | COHEN S A, LEININGER A. The genetic basis of Lynch syndrome and its implications for clinical practice and risk management[J]. Appl. Clin. Genet., 2014,7:147-158. | 
																													
																							| 19 | 王红格. PARP抑制剂与土木香内酯所致DNA氧化损伤在肿瘤细胞中形成的合成致死作用研究[D]. 吉林:吉林大学, 2020. | 
																													
																							| 20 | ALJAŽ G, BRIGITA L, MIHA P. Current view on EpCAM structural biology[J/OL]. Cells, 2020,9(6):1361[2022-12-25]. . | 
																													
																							| 21 | 丁颖, 王聪, 方海生, 等. EPCAM基因缺失导致的林奇综合征相关卵巢癌一例[J/OL]. 中国临床案例成果数据库, 2022,4(1):E132[2022-12-25]. . | 
																													
																							| 22 | HUTH C, KLOOR M, VOIGT A Y, et al.. The molecular basis of EPCAM expression loss in Lynch syndrome-associated tumors[J]. Modern Pathol., 2012,25(6):911-916. | 
																													
																							| 23 | BENDRIS N, LEMMERS B, BLANCHARD J M. Cell cycle, cytoskeleton dynamics and beyond: the many functions of cyclins and CDK inhibitors[J]. Cell Cycle, 2015,14(12):1786-1798. | 
																													
																							| 24 | MUSGROVE E A, CALDON C E, BARRACLOUGH J, et al.. Cyclin D as a therapeutic target in cancer[J]. Nat. Rev. Cancer, 2011,11(8): 558-572. | 
																													
																							| 25 | KRISHNAN R, PATEL P S, HAKEM R. BRCA1 and metastasis: outcome of defective DNA repair[J/OL]. Cancers, 2021,14(1) 108[2022-12-25].. | 
																													
																							| 26 | MAGRIN L, FANALE D, BRANDO C, et al.. POLE, POLD1, and NTHL1: the last but not the least hereditary cancer-predisposing genes[J]. Oncogene, 2021,40(40):5893-5901. | 
																													
																							| 27 | ORANS J, MCSWEENEY E A, IYER R R, et al.. Structures of human exonuclease 1 DNA complexes suggest a unified mechanism for nuclease family[J]. Cell, 2011,145(2):212-223. | 
																													
																							| 28 | SZANKASI P, SMITH G R. A DNA exonuclease induced during meiosis of Schizosaccharomyces pombe [J]. J. Biol. Chem., 1992,267(5):3014-3023. | 
																													
																							| 29 | NAGUIB A, BENCZE G, CHO H, et al.. PTEN functions by recruitment to cytoplasmic vesicles[J]. Mol. Cell, 2015,58(2):255-268. | 
																													
																							| 30 | HOLLANDER M C, BLUMENTHAL G M, DENNIS P A. PTEN loss in the continuum of common cancers, rare syndromes and mouse models[J]. Nat. Rev. Cancer, 2011,11(4):289-301. | 
																													
																							| 31 | SCRUGGS A M, KOH H B, TRIPATHI P, et al.. Loss of CDKN2B promotes fibrosis via increased fibroblast differentiation rather than proliferation[J]. Am. J. Respir Cell Mol. Biol., 2018,59(2):200-214. | 
																													
																							| 32 | YANG L, MA D W, CAO Y P, et al.. PRMT5 functionally associates with EZH2 to promote colorectal cancer progression through epigenetically repressing CDKN2B expression[J]. Theranostics, 2021,11(8):3742-3759. | 
																													
																							| 33 | YUAN J, YI K, YANG L. TGFBR2 regulates hedgehog pathway and cervical cancer cell proliferation and migration by mediating SMAD4[J]. J. Proteome Res., 2020,19(8):3377-3385. |