| 1 | LIEBL M C, HOFMANN T G. The role of p53 signaling in colorectal cancer[J/OL]. Cancers, 2021, 13(9): 2125[2025-02-18]. . | 
																													
																							| 2 | LAPTENKO O, SHIFF I, FREED-PASTOR W, et al.. The p53 C terminus controls site-specific DNA binding and promotes structural changes within the central DNA binding domain[J]. Mol. Cell, 2015, 57(6): 1034-1046. | 
																													
																							| 3 | XIA Z, KON N, GU A P, et al.. Deciphering the acetylation code of p53 in transcription regulation and tumor suppression[J]. Oncogene, 2022, 41(22): 3039-3050. | 
																													
																							| 4 | HENSLEY A P, MCALINDEN A. The role of microRNAs in bone development[J/OL]. Bone, 2021, 143: 115760[2025-02-17]. . | 
																													
																							| 5 | RILEY T, SONTAG E, CHEN P, et al.. Transcriptional control of human p53-regulated genes[J]. Nat. Rev. Mol. Cell Biol., 2008, 9(5): 402-412. | 
																													
																							| 6 | INUKAI R, MORI K, KUWATA K, et al.. The novel ALG-2 target protein CDIP1 promotes cell death by interacting with ESCRT-I and VAPA/B[J/OL]. Int. J. Mol. Sci., 2021, 22(3): 1175[2025-02-17]. . | 
																													
																							| 7 | YANG J, LI Y H, HE M T, et al.. HSP90 regulates osteosarcoma cell apoptosis by targeting the p53/TCF-1-mediated transcriptional network[J]. J. Cell. Physiol., 2020, 235(4): 3894-3904. | 
																													
																							| 8 | CHENY Q, YANGT Q, ZHOUB, et al.. HOXA5 overexpression promotes osteosarcoma cell apoptosis through the p53 and p38α MAPK pathway[J]. Gene, 2019, 689: 18-23. | 
																													
																							| 9 | YU S, GUO L, YAN B, et al.. Tanshinol suppresses osteosarcoma by specifically inducing apoptosis of U2-OS cells through p53-mediated mechanism[J/OL]. J. Ethnopharmacol., 2022, 292: 115214[2025-02-17]. . | 
																													
																							| 10 | HE C, KLIONSKY D J. Regulation mechanisms and signaling pathways of autophagy[J]. Annu. Rev. Genet., 2009, 43: 67-93. | 
																													
																							| 11 | LEE H Y, OH S H. Autophagy-mediated cytoplasmic accumulation of p53 leads to apoptosis through DRAM-BAX in cadmium-exposed human proximal tubular cells[J]. Biochem. Biophys. Res. Commun., 2021, 534: 128-133. | 
																													
																							| 12 | DOSSOU A S, BASU A. The emerging roles of mTORC1 in macromanaging autophagy[J/OL]. Cancers, 2019, 11(10): 1422[2025-02-17]. . | 
																													
																							| 13 | BENSAAD K, TSURUTA A, SELAK M A, et al.. TIGAR, a p53-inducible regulator of glycolysis and apoptosis[J]. Cell, 2006, 126(1): 107-120. | 
																													
																							| 14 | SHIM D, DUAN L, MAKI C G. Erratum: p53-regulated autophagy and its impact on drug resistance and cell fate[J/OL]. Cancer Drug Resist., 2021, 4(4): 903[2025-02-17]. . | 
																													
																							| 15 | REED S M, QUELLE D E. p53 acetylation: regulation and consequences[J]. Cancers, 2014, 7(1): 30-69. | 
																													
																							| 16 | PAN Z, CHENG D D, WEI X J, et al.. Chitooligosaccharides inhibit tumor progression and induce autophagy through the activation of the p53/mTOR pathway in osteosarcoma[J/OL]. Carbohydr. Polym., 2021, 258: 117596[2025-02-16]. . | 
																													
																							| 17 | LORIN S, BORGES A, RIBEIRO DOS SANTOS L, et al.. C-Jun NH2-terminal kinase activation is essential for DRAM-dependent induction of autophagy and apoptosis in 2-methoxyestradiol-treated Ewing sarcoma cells[J]. Cancer Res., 2009, 69(17): 6924-6931. | 
																													
																							| 18 | HUANG X, ZHANG W, PU F, et al.. LncRNA MEG3 promotes chemosensitivity of osteosarcoma by regulating antitumor immunity via miR-21-5p/p53 pathway and autophagy[J]. Genes Dis., 2023, 10(2): 531-541. | 
																													
																							| 19 | 王彦容,郭元彪.基于铁死亡相关LncRNA构建肝细胞癌预后模型的研究[J].生物技术进展,2023,13(3):473-481. | 
																													
																							|  | WANG Y R, GUO Y B. Construction of a prognostic signature for hepatocellular carcinoma based on ferroptosis-related LncRNAs[J]. Curr. Biotechnol., 2023, 13(3): 473-481. | 
																													
																							| 20 | JIANG X, STOCKWELL B R, CONRAD M. Ferroptosis: mechanisms, biology and role in disease[J]. Nat. Rev. Mol. Cell Biol., 2021, 22(4): 266-282. | 
																													
																							| 21 | JIANG L, KON N, LI T, et al.. Ferroptosis as a p53-mediated activity during tumour suppression[J]. Nature, 2015, 520(7545): 57-62. | 
																													
																							| 22 | OU Y, WANG S J, LI D, et al.. Activation of SAT1 engages polyamine metabolism with p53-mediated ferroptotic responses[J/OL]. Proc. Natl. Acad. Sci. USA, 2016, 113(44): 6806-6812 | 
																													
																							| 23 | DE LOS SANTOS-JIMÉNEZ J, CAMPOS-SANDOVAL J A, ALONSO F J, et al.. GLS and GLS2 glutaminase isoenzymes in the antioxidant system of cancer cells[J/OL]. Antioxidants, 2024, 13(6): 745[2025-02-17]. . | 
																													
																							| 24 | MA W Q, SUN X J, ZHU Y, et al.. Metformin attenuates hyperlipidaemia-associated vascular calcification through anti-ferroptotic effects[J]. Free Radic. Biol. Med., 2021, 165: 229-242. | 
																													
																							| 25 | XIE Y, ZHU S, SONG X, et al.. The tumor suppressor p53 limits ferroptosis by blocking DPP4 activity[J]. Cell Rep., 2017, 20(7): 1692-1704. | 
																													
																							| 26 | ZHANG F, WANG W, TSUJI Y, et al.. Post-transcriptional modulation of iron homeostasis during p53-dependent growth arrest[J]. J. Biol. Chem., 2008, 283(49): 33911-33918. | 
																													
																							| 27 | LI F J, LONG H Z, ZHOU Z W, et al.. System X(c) (-)/GSH/GPX4 axis: an important antioxidant system for the ferroptosis in drug-resistant solid tumor therapy[J/OL]. Front. Pharmacol., 2022, 13: 910292[2025-02-17]. . | 
																													
																							| 28 | LISEK K, CAMPANER E, CIANI Y, et al.. Mutant p53 tunes the NRF2-dependent antioxidant response to support survival of cancer cells[J]. Oncotarget, 2018, 9(29): 20508-20523. | 
																													
																							| 29 | HONG T, LEI G, CHEN X, et al.. PARP inhibition promotes ferroptosis via repressing SLC7A11 and synergizes with ferroptosis inducers in BRCA-proficient ovarian cancer[J/OL]. Redox Biol., 2021, 42: 101928[2025-02-17]. . | 
																													
																							| 30 | WANG M, LI S, WANG Y, et al.. Gambogenic acid induces ferroptosis in melanoma cells undergoing epithelial-to-mesenchymal transition[J/OL]. Toxicol. Appl. Pharmacol., 2020, 401: 115110[2025-02-17]. . | 
																													
																							| 31 | WANG H, GUO M, WEI H, et al.. Targeting p53 pathways: mechanisms, structures, and advances in therapy[J/OL]. Signal Transduct. Target. Ther., 2023, 8(1): 92[2025-02-17]. . | 
																													
																							| 32 | LUO Y, GAO X, ZOU L, et al.. Bavachin induces ferroptosis through the STAT3/P53/SLC7A11 axis in osteosarcoma cells[J/OL]. Oxid. Med. Cell. Longev., 2021, 2021: 1783485[2025-02-17]. . | 
																													
																							| 33 | LIU Z, WANG X, LI J, et al.. Gambogenic acid induces cell death in human osteosarcoma through altering iron metabolism, disturbing the redox balance, and activating the p53 signaling pathway[J/OL]. Chem. Biol. Interact., 2023, 382: 110602[2025-02-17]. . |