Current Biotechnology ›› 2023, Vol. 13 ›› Issue (1): 77-82.DOI: 10.19586/j.2095-2341.2022.0167
• Reviews • Previous Articles Next Articles
Liqiang DONG(
), Bin WANG, Shi SU, Dongqi LIU
Received:2022-10-11
Accepted:2022-11-01
Online:2023-01-25
Published:2023-02-07
作者简介:董立强 E-mail: dlq1930@126.com
基金资助:CLC Number:
Liqiang DONG, Bin WANG, Shi SU, Dongqi LIU. Progress on Celastrol in Anti-tumor Effects and Mechanism[J]. Current Biotechnology, 2023, 13(1): 77-82.
董立强, 王斌, 苏适, 刘东琦. 雷公藤红素抗肿瘤作用及机制研究进展[J]. 生物技术进展, 2023, 13(1): 77-82.
| 1 | LU Y, LIU Y, ZHOU J W, et al.. Biosynthesis, total synthesis, structural modifications, bioactiity, and mechanism of action of the quinone-methide triterpenoid celastrol[J]. Med. Res. Rev., 2021, 41(2): 1022-1060. |
| 2 | QIU N S, LIU Y, LIU Q, et al.. Celastrol nanoemulsion induces immunogenicity and downregulates PD-L1 to boost abscopal effect in melanoma therapy[J/OL]. Biomaterials, 2021, 269: 120604[2020-12-17]. . |
| 3 | CARUSO F, SINGH M, BELLI S, et al.. Interrelated mechanism by which the methide quinone celastrol, obtained from the roots of Tripterygium wilfordii, inhibits main protease 3CL of COVID-19 and acts as superoxide radical scavenger[J/OL]. Int. J. Mol. Sci., 2020, 21(23): 9266[2020-10-04]. . |
| 4 | WANG Y Q, LI C L, GU J Y, et al.. Celastrol exerts anti-inflammatory effect in liver fibrosis via activation of AMPK-SIRT3 signalling[J]. J. Cell Mol. Med., 2020, 24(1): 941-953. |
| 5 | SHI J F, LI J X, XU Z Y, et al.. Celastrol: a review of useful strategies overcoming its limitation in anticancer application[J/OL]. Front Pharmacol., 2020, 11: 558741[2020-11-18]. . |
| 6 | NG S W, CHAN Y, CHELLAPPAN D K, et al.. Molecular modulators of celastrol as the key stones for its diverse pharmacological activities[J]. Biomed. Pharmacother., 2019, 109: 1785-1792. |
| 7 | KHAN M G M, WANG Y. Cell cycle-related clinical applications[J]. Methods Mol. Biol., 2022, 2579: 35-46. |
| 8 | QIAN J, ZHANG Z, HAN X, et al.. Radiosensitizing effect of celastrol by inhibiting G2/M phase arrest induced by the c-myc gene of human SW1353 chondrosarcoma cells: network and experimental analyses[J/OL]. Biomed. Res. Int., 2022: 1948657[2022-01-31]. . |
| 9 | SHA M, YE J, LUAN Z Y, et al.. Celastrol induces cell cycle arrest by MicroRNA-21-mTOR-mediated inhibition p27 protein degradation in gastric cancer[J/OL]. Cancer Cell Int., 2015, 15: 101[2015-10-24]. . |
| 10 | FRIEDAN J R, RICHBART S D, MERRITT J C, et al.. Capsaicinoids: multiple effects on angiogenesis, invasion and metastasis in human cancers[J/OL]. Biomed. Pharmacother., 2019, 118: 109317[2019-10-01]. . |
| 11 | DU S H, SONG X Y, LI Y, et al.. Celastrol inhibits ezrin-mediated migration of hepatocellular carcinoma cells[J/OL]. Sci. Rep., 2020, 10(1): 11273[2020-07-09]. . |
| 12 | KIM Y, KANG H, JANG S W, et al.. Celastrol inhibits breast cancer cell invasion via suppression of NF-ĸB-mediated matrix metallo proteinase-9 expression[J]. Cell Physiol. Biochem., 2011, 28(2): 175-184. |
| 13 | HARLOZINSKA A. Progress in molecular mechanisms of tumor metastasis and angiogenesis[J]. Anticancer Res., 2005, 25(5): 3327-3333. |
| 14 | YANG F, GUO Z H, SHI L Q, et al.. Antiangiogenic and antitumor therapy for retinoblastoma with hypoxia-inducible factor-1α siRNA and celastrol co-delivery nanomicelles[J]. J. Biomed. Nanotechnol., 2020, 16(10): 1471-1481. |
| 15 | GAO Y F, ZHOU S, PANG L Z, et al.. Celastrol suppresses nitric oxide synthases and the angiogenesis pathway in colorectal cancer[J]. Free Radic. Res., 2019, 53(3): 324-334. |
| 16 | PANG X F, YI Z F, ZHANG J, et al.. Celastrol suppresses angiogenesis-mediated tumor growth through inhibition of AKT/mammalian target of rapamycin pathway[J]. Cancer Res., 2010, 70(3): 1951-1959. |
| 17 | YU X L, ZHOU X, FU C L, et al.. Celastrol induces apoptosis of human osteosarcoma cells via the mitochondrial apoptotic pathway[J]. Oncol. Rep., 2015, 34(3): 1129-1136. |
| 18 | MOU H, ZHENG Y, ZHAO P, et al.. Celastrol induces apoptosis in non-small-cell lung cancer A549 cells through activation of mitochondria-and Fas/FasL-mediated pathways[J]. Toxicol. In. Vitro., 2011, 25(5): 1027-1032. |
| 19 | ELLIS H, MA C X. PI3K inhibitors in breast cancer therapy[J/OL]. Curr. Oncol. Rep., 2019, 21(12):110[2019-12-11]. . |
| 20 | DUNCAN L, SHAY C, TENG Y. PI3K isoform-selective inhibitors in cancer[J]. Adv. Exp. Med. Biol., 2020, 1255: 165-173. |
| 21 | ZHU B Q, WEI Y W. Antitumor activity of celastrol by inhibition of proliferation, invasion, and migration in cholangiocarcinoma via PTEN/PI3K/Akt pathway[J]. Cancer Med., 2020, 9(2): 783-796. |
| 22 | ZHU Y J, LIU X H, ZHAO P Y, et al.. Celastrol suppresses Glioma vasculogenic mimicry formation and angiogenesis by blocking the PI3K/Akt/mTOR signaling pathway[J/OL]. Front. Pharmacol., 2020, 11: 25[2020-02-06]. . |
| 23 | KANNAIYAN R, MANU K A, CEN L, et al.. Celastrol inhibits tumor cell proliferation and promotes apoptosis through the activation of c-Jun N-terminal kinase and suppression of PI3K/Akt signaling pathways[J]. Apoptosis, 2011, 16(10): 1028-1041. |
| 24 | YAO S S, HAN L, TIAN Z B, et al.. Celastrol inhibits growth and metastasis of human gastric cancer cell MKN45 by down-regulating microRNA-21[J]. Phytother. Res., 2019, 33(6): 1706-1716. |
| 25 | BUF T, DI X, YILIN Z, et al.. Celastrol inhibits colorectal cancer cell proliferation and migration through suppression of MMP3 and MMP7 by the PI3K/AKT signaling pathway[J]. Anti-cancer Drug., 2018, 29(6): 530-538. |
| 26 | SHRIVASTAVA S, JEENGAR M K, REDDY V S, et al.. Anticancer effect of celastrol on human triple negative breast cancer: possible involvement of oxidative stress, mitochondrial dysfunction, apoptosis and PI3K/Akt pathways[J]. Exp. Mol. Pathol., 2015, 98(3): 313-327. |
| 27 | LEE J H, WON Y S, PARK K H, et al.. Celastrol inhibits growth and induces apoptotic cell death in melanoma cells via the activation ROS-dependent mitochondrial pathway and the suppression of PI3K/AKT signaling[J]. Apoptosis, 2012, 17(12): 1275-1286. |
| 28 | LIN Y G, KUNNUMAKKARA A B, NAIR A, et al.. Curcumin inhibits tumor growth and angiogenesis in ovarian carcinoma by targeting the nuclear factor-kappaB pathway[J]. Clin. Cancer Res., 2007, 13(11): 3423-3430. |
| 29 | VERBOOM L, HOSTE E, VANN L G. OTULIN in NF-κB signaling, cell death, and disease[J]. Trends. Immunol., 2021, 42(7): 590-603. |
| 30 | YANG F, LIU H, YU Y, et al.. TRIM9 overexpression promotes uterine leiomyoma cell prolif eration and inhibits cell apoptosis via NF-κB signaling pathway[J/OL]. Life Sci., 2020, 257:118101[2020-07-15]. . |
| 31 | RASMI R R, SAKTHIVEL K M, GURUVAYOORAPPAN C. NF-κB inhibitors in treatment and prevention of lung cancer[J/OL]. Biomed. Pharmacother., 2020, 130: 110569[2022-10-01]. . |
| 32 | TOZAMA K, SAGAWA M, KIZAKI M. Quinone methide tripterine, celastrol, induces apoptosis in human myeloma cells via NF-κB pathway[J]. Int. J. Oncol., 2011, 39(5): 1117-1122. |
| 33 | YAN F, WU Z, LI Z, et al.. Celastrol inhibits migration and invasion of triple-negative breast cancer cells by suppressing interleukin-6 via downregulating nuclear factor-κB (NF-κB)[J/OL]. Med. Sci. Monit., 2020, 26: e922814[2020-09-13]. . |
| 34 | WANG Z, ZHAI Z, DU X. Celastrol inhibits migration and invasion through blocking the NF-κB pathway in ovarian cancer cells[J]. Exp. Ther. Med., 2017, 14(1): 819-824. |
| 35 | ChIANG K C, TUSI K H, CHUNG L C, et al.. Celastrol blocks interleukin-6 gene expression via downregulation of NF-κB in prostate carcinoma cells[J/OL]. PLoS ONE, 2014, 9: e93151[2014-03-24]. . |
| 36 | DAI Y, DESANO J, TANG W, et al.. Natural proteasome inhibitor celastrol suppresses andro gen-independent prostate cancer progression by modulating apoptotic proteins and NF-kappaB[J/OL]. PLoS ONE, 2010, 5: e14153[2014-03-24]. . |
| 37 | YUAN J, DONG X, YAP J, et al.. The MAPK and AMPK signalings: interplay and implication in targeted cancer therapy[J/OL]. J. Hematol. Oncol., 2020, 13 (1): 113[2020-08-17]. . |
| 38 | ZHU H, LIU X W, CAI T Y, et al.. Celastrol acts as a potent antimetastatic agent targeting beta1 integrin and inhibiting cell-extracellular matrix adhesion, in part via the p38 mitogen-activated protein kinase pathway[J]. J. Pharmacol. Exp. Ther., 2010, 334(2): 489-499. |
| 39 | HSIEH M J, WANG C W, LIN J T, et al.. Celastrol, a plant-derived triterpene, induces cisplatin-resistance nasopharyngeal carcinoma cancer cell apoptosis though ERK1/2 and p38 MAPK signaling pathway[J/OL]. Phytomedicine, 2019, 58: 152805[2019-03-01]. . |
| 40 | SANTONI M, MICCINI F, CIMADAMORE A, et al.. An update on investigational therapies that target STAT3 for the treatment of cancer[J]. Expert Opin. Investig. Drug. 2021, 30(3): 245-251. |
| 41 | LI X, WANG H, DING J, et al.. Celastrol strongly inhibits proliferation, migration and cancer stem cell properties through suppression of Pin1 in ovarian cancer cells[J]. Eur. J. Pharmacol., 2019, 842: 146-156. |
| 42 | YAN Y F, ZHANG H H, LV Q, et al.. Celastrol suppresses the proliferation of lung adenocarci noma cells by regulating microRNA-24 and microRNA-181b[J]. Oncol. Lett., 2018, 15(2): 2515-2521. |
| 43 | RAJENDRAN P, LI F, SHANMUGAM M K, et al.. Celastrol suppresses growth and induces apoptosis of human hepatocellular carcinoma through the modulation of STAT3/JAK2 signaling cascade in vitro and in vivo[J]. Cancer Prev. Res (Phila)., 2012, 5(4): 631-643. |
| 44 | SHIN S A, MOON S Y, PARK D, et al.. Apoptotic cell clearance in the tumor microenvironment: a potential cancer therapeutic target[J]. Arch. Pharm. Res., 2019, 42(8): 658-671. |
| 45 | ABRAHA A M, KETEMA E B. Apoptotic pathways as a therapeutic target for colorectal cancer treatment[J]. World J. Gastrointest. Oncol., 2016, 8(8): 583-591. |
| 46 | BURKE P J. Mitochondria, bioenergetics and apoptosis in cancer[J]. Trends. Cancer, 2017, 3(12): 857-870. |
| 47 | CHEN M, YANG J, LI L, et al.. Metabolomics reveals that cysteine metabolism plays a role in celastrol-induced mitochondrial apoptosis in HL-60 and NB-4 cells[J/OL]. Sci .Rep., 2020, 10(1): 471[2020-01-12]. . |
| 48 | LIU X, GAO R W, LI M, et al.. The ROS derived mitochondrial respirstion not from NADPH oxidase plays key role in celastrol against angiotensin Ⅱ-mediated HepG2 cell proliferation[J]. Apoptosis, 2016, 21(11): 1315-1326. |
| 49 | DENG H, ZHOU Z, YANG W, et al.. Endoplasmic reticulum targeting to amplify immuno genic cell death for cancer immunotherapy[J]. Nano. Lett., 2020, 20(3): 1928-1933. |
| 50 | CHEN Y, OU Y, TAO Y, et al.. Effect and mechanisms of celastrol on the apoptosis of HOS osteosarcoma cells[J]. Oncol. Rep., 2018, 40(4): 2260-2268. |
| 51 | REN B, LIU H, GAU H, et al.. Celastrol induces apoptosis in hepatocellular carcinoma cells via targeting ER-stress/UPR[J]. Oncotarget, 2017, 8(54): 93039-93050. |
| 52 | FENG L, ZHANG D, FAN C, et al.. ER stress-mediated apoptosis induced by celastrol in cancer cells and important role of glycogen synthase kinase-3β in the signal network[J/OL]. Cell Death Dis., 2013, 4(7): e715[2013-07-11]. . |
| 53 | SHARMA S, CARMONA A, SKOWRONEK A, et al.. Apoptotic signalling targets the post-endocytic sorting machinery of the death receptor Fas/CD95[J/OL]. Nat. Commun., 2019, 10(1): 3105[2019-07-15]. . |
| 54 | MAEDA K, NAKAYAMA J, TAKI S, et al.. TAK1 limits death receptor Fas-induced proin flammatory cell death in macrophages[J]. J. Immunol., 2022, 209(6): 1173-1179. |
| 55 | CHA Z, CHENG J, XIANG H, et al.. Celastrol enhances TRAIL-induced apoptosis in human glioblastoma via the death receptor pathway[J]. Cancer Chemother. Pharmacol., 2019, 84(4): 719-728. |
| 56 | LIN H F, HSIEH M J, HSI Y T, et al.. Celastrol-induced apoptosis in human nasopharyngeal carcinoma is associated with the activation of the death receptor and the mitochondrial pathway[J]. Oncol. Lett., 2017, 14(2): 1683-1690. |
| 57 | SUNG B, PARK B, YADAV V R, et al.. Celastrol, a triterpene, enhances TRAIL-induced apoptosis through the down-regulation of cell survival proteins and up-regulation of death receptors[J]. J. Biol. Chem., 2010, 285(32): 11498-11507. |
| 58 | RAMAMOORTHY P, DANDAWATE P, JENSEN R A, et al.. Celastrol and triptolide suppress stemness in triple negative breast cancer: notch as a therapeutic target for stem cells[J/OL]. Biomedicines, 2021, 9(5): 482[2021-04-28]. . |
| [1] | Lina ZHU, Zhiling SONG. Autophagy and Apoptosis: Interactions and Their Role in Disease [J]. Current Biotechnology, 2025, 15(4): 622-626. |
| [2] | Xiaoyu JIANG, Yi CHEN, Jingjing NI. Mechanism of miR-93 Regulating Immune-mediated Traumatic Brain Injury Through Activation of PI3K/AKT Pathway [J]. Current Biotechnology, 2025, 15(4): 711-719. |
| [3] | Xiaoya LIU, Shuomin ZHANG, Peng ZHENG, Rui MA, Chaojun ZHANG. Role and Mechanisms of DBNDD1 in Colorectal Cancer Development [J]. Current Biotechnology, 2025, 15(4): 726-734. |
| [4] | Geyemuri WU, Jianqiang WU. Anti-tumor Effects of Gentian Violet [J]. Current Biotechnology, 2025, 15(2): 226-233. |
| [5] | Yanjie WANG, Bo QIU. The Role and Research Progress of Gene P53 in Osteosarcoma [J]. Current Biotechnology, 2025, 15(2): 241-246. |
| [6] | Kaijing SUN, Xinze LIU, Xin JIN, Xue YANG, Qi WANG, Yu LI, Changbao CHEN, Xilin WAN. Research Progress on Antitumor Active Constituents and Their Mechanism of Action of Traditional Chinese Medicine Sanghuangporus baumii [J]. Current Biotechnology, 2024, 14(6): 929-936. |
| [7] | Xuan ZHAO, Limei REN, Xiaoru WANG, Guangxin HAN, Dandan GU, Yasen YAO, Yonghao QI. Effects of siRNA Targeting to Interfere with the Expression of TRAF6 on the Proliferation and Apoptosis of Lung Cancer Cells [J]. Current Biotechnology, 2024, 14(5): 875-881. |
| [8] | Xing JIANG, Chang MENG, Longpan CHEN, Qinglu WANG, Xuewen TIAN. Effects of Hypoxic Exercise on the Expression of Serum Exosome Wnt3a in Obese Rats [J]. Current Biotechnology, 2024, 14(4): 685-693. |
| [9] | Beibei LI, Jianqiang WU. Research Progress of Fas-mediated Non-apoptotic Signaling in Tumor Cells [J]. Current Biotechnology, 2024, 14(3): 406-412. |
| [10] | Hui ZHANG, Bobo LIU, Fengmei LI, Jian CUI. Study on the Involvement of Auxin Signaling Pathway in Response to Powdery Mildew Stress in Pumpkin [J]. Current Biotechnology, 2024, 14(3): 433-441. |
| [11] | Yifan LI, Weiwei FENG, Guanghua MAO, Ting ZHAO, Yao CHEN, Mengna LUO, Xin GENG, Chaoqiong WU, Liuqing YANG, Xiangyang WU. Metabolic Toxicity and Mechanism of Fenitrothion Exposure on BRL Cells [J]. Current Biotechnology, 2024, 14(3): 459-465. |
| [12] | Weijian ZHAO, Hongting XU, Xiangqian XIAO, Wang SHENG. Research Progress on Hippo Signaling Pathway in Cancer Stem Cell [J]. Current Biotechnology, 2024, 14(2): 211-220. |
| [13] | Mingjiao ZHANG, Jiefu ZHU, Xiongfei WU. Cell Death in Cisplatin-induced Kidney Injury [J]. Current Biotechnology, 2023, 13(5): 718-724. |
| [14] | Ying TANG, Jianqiang WU. Anti-tumor Effects of Phenylethanoid Glycosides Deprived from Cistanche deserticola [J]. Current Biotechnology, 2023, 13(3): 399-405. |
| [15] | Wei ZHANG, Hongfang WANG, Baohua XU. Overview of the Main Molecular Mechanisms of Biological Aging [J]. Current Biotechnology, 2023, 13(2): 228-233. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||