Current Biotechnology ›› 2024, Vol. 14 ›› Issue (5): 776-784.DOI: 10.19586/j.2095-2341.2024.0069
• Reviews • Previous Articles Next Articles
					
													Weili ZHAO( ), Na LYU, Huiqiang LI, Yahui HE, Lulu LI, Mingli LIANG, Yanyi LI(
), Na LYU, Huiqiang LI, Yahui HE, Lulu LI, Mingli LIANG, Yanyi LI( )
)
												  
						
						
						
					
				
Received:2024-04-01
															
							
															
							
																	Accepted:2024-06-03
															
							
																	Online:2024-09-25
															
							
																	Published:2024-10-22
															
						Contact:
								Yanyi LI   
													
        
               		赵尉吏( ), 吕娜, 李会强, 何亚辉, 李露露, 梁明丽, 李岩异(
), 吕娜, 李会强, 何亚辉, 李露露, 梁明丽, 李岩异( )
)
                  
        
        
        
        
    
通讯作者:
					李岩异
							作者简介:赵尉吏 E-mail:18003218172@163.com;
				
							CLC Number:
Weili ZHAO, Na LYU, Huiqiang LI, Yahui HE, Lulu LI, Mingli LIANG, Yanyi LI. Research Progress of Virus-like Particles Vaccine[J]. Current Biotechnology, 2024, 14(5): 776-784.
赵尉吏, 吕娜, 李会强, 何亚辉, 李露露, 梁明丽, 李岩异. 病毒样颗粒疫苗研究进展[J]. 生物技术进展, 2024, 14(5): 776-784.
| 药品名称 | 上市时间 | 抗原表位 | 表达系统 | 佐剂 | 生产商 | 
|---|---|---|---|---|---|
| Engerix-B® | 1989 | S抗原 | 酿酒酵母 | 氢氧化铝 | 英国葛兰素史克公司 | 
| Fendrix® | 2005 | S抗原 | 酿酒酵母 | AS04 | 英国葛兰素史克公司 | 
| Heplisav-B® | 2017 | S抗原 | 汉逊酵母 | CpG1018 | 美国德纳维制药公司 | 
| Recombivax HB® | 2018 | S抗原 | 酿酒酵母 | 硫酸铝 | 美国默沙东公司 | 
| PreHevbrio®(Sci-B-Vac) | 2021 | S抗原、pre-S1抗原和pre-S2抗原 | 哺乳动物(CHO细胞) | 氢氧化铝 | 美国VBI疫苗公司 | 
Table 1 HBV based on VLPs on the market
| 药品名称 | 上市时间 | 抗原表位 | 表达系统 | 佐剂 | 生产商 | 
|---|---|---|---|---|---|
| Engerix-B® | 1989 | S抗原 | 酿酒酵母 | 氢氧化铝 | 英国葛兰素史克公司 | 
| Fendrix® | 2005 | S抗原 | 酿酒酵母 | AS04 | 英国葛兰素史克公司 | 
| Heplisav-B® | 2017 | S抗原 | 汉逊酵母 | CpG1018 | 美国德纳维制药公司 | 
| Recombivax HB® | 2018 | S抗原 | 酿酒酵母 | 硫酸铝 | 美国默沙东公司 | 
| PreHevbrio®(Sci-B-Vac) | 2021 | S抗原、pre-S1抗原和pre-S2抗原 | 哺乳动物(CHO细胞) | 氢氧化铝 | 美国VBI疫苗公司 | 
| 药品名称 | 上市时间 | 抗原表位 | 表达系统 | 佐剂 | 生产商 | 
|---|---|---|---|---|---|
| Cervarix® | 2006 | L1 HPV 16 L1 HPV 18 | 昆虫-杆状病毒 | 氢氧化铝ASO4 | 英国葛兰素史克公司 | 
| Gardasil® | 2009 | L1 HPV 6 L1 HPV 11 L1 HPV 16 L1 HPV 18 | 酿酒酵母 | 羟基磷酸硫酸铝 | 美国默沙东公司 | 
| Gardasil9® | 2014 | L1 HPV 6 L1 HPV 11 L1 HPV 16 L1 HPV 18 L1 HPV 31 L1 HPV 33 L1 HPV 45 L1 HPV 52 L1 HPV 58 | 酿酒酵母 | 羟基磷酸硫酸铝 | 美国默沙东公司 | 
| 馨可宁® | 2019 | L1 HPV 16 L1 HPV 18 | 大肠杆菌 | 氢氧化铝 | 厦门万泰 | 
| 沃泽惠® | 2022 | L1 HPV 16 L1 HPV 18 | 毕赤酵母 | 磷酸铝 | 沃森生物 | 
Table 2 HPV prophylactic vaccines based on VLPs on the market
| 药品名称 | 上市时间 | 抗原表位 | 表达系统 | 佐剂 | 生产商 | 
|---|---|---|---|---|---|
| Cervarix® | 2006 | L1 HPV 16 L1 HPV 18 | 昆虫-杆状病毒 | 氢氧化铝ASO4 | 英国葛兰素史克公司 | 
| Gardasil® | 2009 | L1 HPV 6 L1 HPV 11 L1 HPV 16 L1 HPV 18 | 酿酒酵母 | 羟基磷酸硫酸铝 | 美国默沙东公司 | 
| Gardasil9® | 2014 | L1 HPV 6 L1 HPV 11 L1 HPV 16 L1 HPV 18 L1 HPV 31 L1 HPV 33 L1 HPV 45 L1 HPV 52 L1 HPV 58 | 酿酒酵母 | 羟基磷酸硫酸铝 | 美国默沙东公司 | 
| 馨可宁® | 2019 | L1 HPV 16 L1 HPV 18 | 大肠杆菌 | 氢氧化铝 | 厦门万泰 | 
| 沃泽惠® | 2022 | L1 HPV 16 L1 HPV 18 | 毕赤酵母 | 磷酸铝 | 沃森生物 | 
| 1 | KUSHNIR N, STREATFIELD S J, YUSIBOV V. Virus-like particles as a highly efficient vaccine platform: diversity of targets and production systems and advances in clinical development[J]. Vaccine, 2012, 31(1): 58-83. | 
| 2 | KLEID D G, YANSURA D, SMALL B, et al.. Cloned viral protein vaccine for foot-and-mouth disease: responses in cattle and swine[J]. Science, 1981, 214(4525): 1125-1129. | 
| 3 | LMICHEL M, TIOLLAIS P. Hepatitis B vaccines: protective efficacy and therapeutic potential[J]. Pathol. Biol. (Paris), 2010, 58(4): 288-295. | 
| 4 | LINDA H, LUA L, FRANK S, et al.. Bioengineering virus-like particles as vaccines[J].Biotechnol. Bioengin., 2014, doi:10.1002/bit.25159[2024-08-02]. . | 
| 5 | WHITACRE D C, LEE B O, MILICH D R. Use of hepadnavirus core proteins as vaccine platforms[J]. Expert Rev. Vaccines, 2009, 8(11): 1565-1573. | 
| 6 | SAUNDERS K, SAINSBURY F, LOMONOSSOFF G P. Efficient generation of cowpea mosaic virus empty virus-like particles by the proteolytic processing of precursors in insect cells and plants[J]. Virology, 2009, 393(2): 329-337. | 
| 7 | KIRNBAUER R, TAUB J, GREENSTONE H, et al.. Efficient self-assembly of human papillomavirus type 16 L1 and L1-L2 into virus-like particles[J]. Int. J. Mol. Sci., 1993, 67(12): 6929-6936. | 
| 8 | PORTA C, KOTECHA A, BURMAN A, et al.. Rational engineering of recombinant picornavirus capsids to produce safe, protective vaccine antigen[J/OL]. PLoS Pathog., 2013, 9(3): e1003255[2024-08-02]. . | 
| 9 | HEWAT E A, BOOTH T F, ROY P. Structure of correctly self-assembled bluetongue virus-like particles[J]. J. Struct. Biol., 1994, 112(3): 183-191. | 
| 10 | CONNER M E, ZARLEY C D, HU B, et al.. Virus-like particles as a rotavirus subunit vaccine[J]. J. Interv. Cardiol., 1996, 174(): S88-S92. | 
| 11 | KANG S M, KIM M C, COMPANS R W. Virus-like particles as universal influenza vaccines[J]. Expert Rev. Vaccines, 2012, 11(8): 995-1007. | 
| 12 | FREIVALDS J, DISLERS A, OSE V, et al.. Highly efficient production of phosphorylated hepatitis B core particles in yeast Pichia pastoris [J]. Protein Expr. Purif., 2011, 75(2): 218-224. | 
| 13 | KALNCIEMA I, SKRASTINA D, OSE V, et al.. Potato virus Y-like particles as a new carrier for the presentation of foreign protein stretches[J]. Mol. Biotechnol., 2012, 52(2): 129-139. | 
| 14 | IBAÑEZ L I, ROOSE K, DE FILETTE M, et al.. M2e-displaying virus-like particles with associated RNA promote T helper 1 type adaptive immunity against influenza A[J/OL]. PLoS One, 2013, 8(3): e59081[2024-08-02]. . | 
| 15 | SAINSBURY F, SAUNDERS K, ALJABALI A A A, et al.. Peptide-controlled access to the interior surface of empty virus nanoparticles[J]. ChemBioChem, 2011, 12(16): 2435-2440. | 
| 16 | KUZNETSOV Y G, MCPHERSON A. Atomic force microscopy in imaging of viruses and virus-infected cells[J]. Microbiol. Mol. Biol. Rev., 2011, 75(2): 268-285. | 
| 17 | ZHAO Q, ALLEN M J, WANG Y, et al.. Disassembly and reassembly improves morphology and thermal stability of human papillomavirus type 16 virus-like particles[J]. Nanomedicine, 2012, 8(7): 1182-1189. | 
| 18 | EMILHIET P, DOSSET P, GODEFROY C, et al.. Nanoscale topography of hepatitis B antigen particles by atomic force microscopy[J]. Biochimie, 2011, 93(2): 254-259. | 
| 19 | PEASE L F, LIPIN D I, TSAI D H, et al.. Quantitative characterization of virus-like particles by asymmetrical flow field flow fractionation, electrospray differential mobility analysis, and transmission electron microscopy[J]. Biotechnol. Bioeng., 2009, 102(3): 845-855. | 
| 20 | DESCHUYTENEER M, ELOUAHABI A, PLAINCHAMP D, et al.. Molecular and structural characterization of the L1 virus-like particles that are used as vaccine antigens in Cervarix™, the AS04-adjuvanted HPV-16 and-18 cervical cancer vaccine[J]. Hum. Vaccin., 2010, 6(5): 407-419. | 
| 21 | SHAH K, CHAUBEY P, MISRA N. Bioinformatics approach for screening and modeling of putative T cell epitopes from Por B protein of Neisseria meningitides as vaccine constructs[J]. Indian J. Biotechnol., 2010, 9(4):351-359. | 
| 22 | MOHSEN M O, GOMES A C, CABRAL-MIRANDA G, et al.. Delivering adjuvants and antigens in separate nanoparticles eliminates the need of physical linkage for effective vaccination[J]. J. Control. Release, 2017, 251: 92-100. | 
| 23 | NOAD R, ROY P. Virus-like particles as immunogens[J]. Trends Microbiol., 2003, 11(9): 438-444. | 
| 24 | BACHMANN M F, JENNINGS G T. Vaccine delivery: a matter of size, geometry, kinetics and molecular patterns[J]. Nat. Rev. Immunol., 2010, 10(11): 787-796. | 
| 25 | MOHSEN M O, ZHA L, CABRAL-MIRANDA G, et al.. Major findings and recent advances in virus-like particle (VLP)-based vaccines[J]. Semin. Immunol., 2017, 34: 123-132. | 
| 26 | FRIETZE K M, PEABODY D S, CHACKERIAN B. Engineering virus-like particles as vaccine platforms[J]. Curr. Opin. Virol., 2016, 18: 44-49. | 
| 27 | FIEDLER J D, HIGGINSON C, HOVLID M L, et al.. Engineered mutations change the structure and stability of a virus-like particle[J]. Biomacromolecules, 2012, 13(8): 2339-2348. | 
| 28 | MOHSEN M O, BALKE I, ZINKHAN S, et al.. A scalable and highly immunogenic virus-like particle-based vaccine against SARS-CoV-2[J]. Allergy, 2022, 77(1): 243-257. | 
| 29 | SASAGAWA T, PUSHKO P, STEERS G, et al.. Synthesis and assembly of virus-like particles of human papillomaviruses type 6 and type 16 in fission yeast Schizosaccharomyces pombe [J]. Virology, 1995, 206(1): 126-135. | 
| 30 | LUCKOW V A, LEE S C, BARRY G F, et al.. Efficient generation of infectious recombinant baculoviruses by site-specific transposon-mediated insertion of foreign genes into a baculovirus genome propagated in Escherichia coli [J]. J. Virol., 1993, 67(8): 4566-4579. | 
| 31 | ESTES M L, EWING-WILSON D, CHOU S M, et al.. Chloroquine neuromyotoxicity. clinical and pathologic perspective[J]. Am. J. Med., 1987, 82(3): 447-455. | 
| 32 | BETENBAUGH M, YU M, KUEHL K, et al.. Nucleocapsid- and virus-like particles assemble in cells infected with recombinant baculoviruses or vaccinia viruses expressing the M and the S segments of Hantaan virus[J]. Virus Res., 1995, 38(2-3): 111-124. | 
| 33 | ROLDÃO A, MELLADO M C M, CASTILHO L R, et al.. Virus-like particles in vaccine development[J]. Expert Rev. Vaccines, 2010, 9(10): 1149-1176. | 
| 34 | GURRAMKONDA C, ADNAN A, GÄBEL T, et al.. Simple high-cell density fed-batch technique for high-level recombinant protein production with Pichia pastoris: application to intracellular production of hepatitis B surface antigen[J/OL]. Microb. Cell Fact., 2009, 8: 13[2024-08-02]. . | 
| 35 | GAVILANES F, GONZALEZ-ROS J M, PETERSON D L. Structure of hepatitis B surface antigen. Characterization of the lipid components and their association with the viral proteins[J]. J. Biol. Chem., 1982, 257(13): 7770-7777. | 
| 36 | PARASHAR U. Advisory Committee on Immunization Practices (ACIP), Centers for Disease Control and Prevention (CDC): Prevention of rotavirus gastroenteritis among infants and children. Recommendations of the Advisory Committee on Immunization Practices (ACIP)[J/OL]. Aust. J. Rural. Health, 2006, doi:10.1111/j.1440-1584.2007.00928.x[2024-08-02]. . | 
| 37 | VESIKARI T, FINN A, VAN DAMME P, et al.. Immunogenicity and safety of a 3-antigen hepatitis B vaccine vs a single-antigen hepatitis B vaccine: a phase 3 randomized clinical trial[J/OL]. JAMA Netw. Open, 2021, 4(10): e2128652[2024-08-02]. . | 
| 38 | GUPTA A K, MACLEOD M A, ABRAMOVITS W. GARDASIL 9 (human papillomavirus 9-valent vaccine, recombinant)[J]. Skinmed, 2016, 14(1): 33-37. | 
| 39 | HU Y M, HUANG S J, CHU K,et al.. Safety of an Escherichia coli-expressed bivalent human papillomavirus (types 16 and 18) L1 virus-like particle vaccine an open-label phase I clinical trial[J]. Human Vaccines Immunother., 2014, 10(2): 1-7. | 
| 40 | ANASTASIA P, CYRA P, ALEXIS P, et al.. Safety of human papillomavirus vaccines: an updated review[J]. Drug Safety Int. J. Med. Toxicol. Drug Exp., 2018, 41:329-346. | 
| 41 | LANINI S, GARBUGLIA A R, LAPA D, et al.. Epidemiology of HEV in the mediterranean basin: 10-year prevalence in Italy[J/OL]. BMJ Open, 2015, 5(7): e007110[2024-08-02]. . | 
| 42 | WU X, CHEN P, LIN H, et al.. Hepatitis E virus: current epidemiology and vaccine[J]. Hum. Vaccin. Immunother., 2016, 12(10): 2603-2610. | 
| 43 | HOLLA R P, AHMAD I, AHMAD Z, et al.. Molecular virology of hepatitis E virus[J]. Semin. Liver Dis., 2013, 33(1): 3-14. | 
| 44 | BRADLEY D W. Hepatitis E virus: a brief review of the biology, molecular virology, and immunology of a novel virus[J]. J. Hepatol., 1995, 22(1 ): 140-145. | 
| 45 | Robust manufacturing and comprehensive characterization of recombinant hepatitis E virus-like particles in Hecolin?[J].Vaccine, 2014, 32(32):4039-4050. | 
| 46 | MAZALOVSKA M, KOUOKAM J C. Progress in the production of virus-like particles for vaccination against hepatitis E virus[J/OL]. Viruses, 2020, 12(8): 826[2024-08-02]. . | 
| 47 | ARORA N, ANBALAGAN LC, PANNU A K. Towards eradication of malaria: is the WHO's RTS, S/AS01 vaccination effective enough?[J]. Risk Manag. Healthc. Policy, 2021, 14: 1033-1039. | 
| 48 | CALLAWAY E. The next generation of coronavirus vaccines: a graphical guide[J]. Nature, 2023, 614(7946): 22-25. | 
| 49 | THOMS F, JENNINGS G T, MAUDRICH M, et al.. Immunization of cats to induce neutralizing antibodies against Fel d 1, the major feline allergen in human subjects[J]. J. Allergy Clin. Immunol., 2019, 144(1): 193-203. | 
| 50 | YILMAZ I C, IPEKOGLU E M, BULBUL A, et al.. Development and preclinical evaluation of virus-like particle vaccine against COVID-19 infection[J]. Allergy, 2022, 77(1): 258-270. | 
| 51 | PILLET S, ARUNACHALAM P S, ANDREANI G, et al.. Safety, immunogenicity, and protection provided by unadjuvanted and adjuvanted formulations of a recombinant plant-derived virus-like particle vaccine candidate for COVID-19 in nonhuman Primates[J]. Cell. Mol. Immunol., 2022, 19(2): 222-233. | 
| 52 | NG K K, PENDÁS-FRANCO N, ROJO J, et al.. Crystal structure of Norwalk virus polymerase reveals the carboxyl terminus in the active site cleft[J]. J. Biol. Chem., 2004, 279(16): 16638-16645. | 
| 53 | JAZAYERI S D, POH C L. Development of universal influenza vaccines targeting conserved viral proteins[J/OL]. Vaccines (Basel), 2019, 7(4): 169[2024-08-02]. . | 
| 54 | BUFFIN S, PEUBEZ I, BARRIÈRE F, et al.. Influenza A and B virus-like particles produced in mammalian cells are highly immunogenic and induce functional antibodies[J]. Vaccine, 2019, 37(46): 6857-6867. | 
| 55 | TISSOT A C, RENHOFA R, SCHMITZ N, et al.. Versatile virus-like particle carrier for epitope based vaccines[J/OL]. PLoS One, 2010, 5(3): e9809[2024-08-02]. . | 
| 56 | CHANG M O, SUZUKI T, SUZUKI H, et al.. HIV-1 Gag-virus-like particles induce natural killer cell immune responses via activation and maturation of dendritic cells[J]. J. Innate Immun., 2012, 4(2): 187-200. | 
| 57 | CHANG M O, SUZUKI T, YAMAMOTO N, et al.. HIV-1 Gag-virus-like particles inhibit HIV-1 replication in dendritic cells and T cells through IFN-α-dependent upregulation of APOBEC3G and 3F[J]. J. Innate Immun., 2012, 4(5-6): 579-590. | 
| [1] | Nana ZHOU, Xiaoyan WANG, Yuan ZHANG, Jing WANG, Guomiao ZHAO, Chao WEI, Kai YANG, Tai AN. Progress on the Production Technology of Recombinant Therapeutic Proteins [J]. Current Biotechnology, 2021, 11(6): 724-731. | 
| [2] | Dan LI, Haozhi SONG, Weisong GAO, Xingjian LIU, Zhifang ZHANG, Yinyu LI. Prokaryotic Expression and Immunogenicity Detection of the H Protein of Peste des Petits Ruminants Virus [J]. Current Biotechnology, 2021, 11(6): 770-776. | 
| [3] | YANG Xin, SONG Haozhi, LIU Xingjian, LI Yinyu, ZHANG Zhifang*. Expression of Chicken Interferon Kappa in Silkworm-baculovirus Expression System and the Antiviral Activity Assay [J]. Curr. Biotech., 2020, 10(3): 251-255. | 
| [4] | WANG Xianxiang1,2, ZHAO Ze2, WANG Peng2, LIU Xingjian2, HU Xiaoyuan2, ZHANG Zhifang2, LI Yinv2, FANG Lingli1, YE Aihua1*. Expression of Ovis aries λ3 Interferon in Silkworm-baculovirus Expression System and the Antiviral Activity Assay [J]. Curr. Biotech., 2019, 9(5): 502-508. | 
| [5] | DU Mengtan, LIU Xingjian, HU Xiaoyuan, ZHANG Zhifang, LI Yinv*. The Production Method of Adeno-associated Virus and its Application in Gene Therapy [J]. Curr. Biotech., 2019, 9(4): 326-331. | 
| [6] | ZHAO Lulu1, ZHAO Ze2, YANG Xin1, LIU Xingjian1, HU Xiaoyuan1, ZHANG Zhifang1, LI Yinv1*. Expression of Bovine λ3 Interferon in Silkworm-baculovirus Expression System and the Antiviral Activity Assay [J]. Curr. Biotech., 2018, 8(5): 420-425. | 
| [7] | LU Nian1, LIU Xingjian1, HU Xiaoyuan1, LI Yinv1, YI Yongzhu2, ZHANG Zhifang1*. Package of Recombinant Adeno-associated Virus Type 2 Based on BmNPV-silkworm Expression System [J]. Curr. Biotech., 2018, 8(1): 71-77. | 
| [8] | YANG Qin, CHEN Hai-qin*, CHEN Si, GU Zhen-nan, ZHANG Hao, CHEN Yong-quan, CHEN Wei. Expression of the ω-3 Fatty Acid Desaturase from Mortierella alpina in Wheat-germ Cell-free Protein Expression System [J]. Curr. Biotech., 2016, 6(5): 346-351. | 
| [9] | LIU Xing-jian1, YANG Xin1, ZHANG Zhi-fang1, LI Yi-nv1, YI Yong-zhu2, HU Xiao-yuan1*. Expression and Antiviral Activity Detection of Feline Interferon ω-like in Silkworm [J]. Curr. Biotech., 2015, 5(6): 441-445. | 
| [10] | ZHANG Yun-peng, WEN Tong, JIANG Wei*. The Research Progress of Escherichia coli Expression Systems and Yeast Expression Systems [J]. Curr. Biotech., 2014, 4(6): 389-393. | 
| [11] | YAO Zheng-ying, ZHANG Wei-ming, SUN Li-jun*. Research Progress in Biotechnological Applications of Oil Bodies [J]. Curr. Biotech., 2014, 4(5): 318-324. | 
| Viewed | ||||||
| Full text |  | |||||
| Abstract |  | |||||