Current Biotechnology ›› 2024, Vol. 14 ›› Issue (5): 776-784.DOI: 10.19586/j.2095-2341.2024.0069
• Reviews • Previous Articles Next Articles
Weili ZHAO(
), Na LYU, Huiqiang LI, Yahui HE, Lulu LI, Mingli LIANG, Yanyi LI(
)
Received:2024-04-01
Accepted:2024-06-03
Online:2024-09-25
Published:2024-10-22
Contact:
Yanyi LI
赵尉吏(
), 吕娜, 李会强, 何亚辉, 李露露, 梁明丽, 李岩异(
)
通讯作者:
李岩异
作者简介:赵尉吏 E-mail:18003218172@163.com;
CLC Number:
Weili ZHAO, Na LYU, Huiqiang LI, Yahui HE, Lulu LI, Mingli LIANG, Yanyi LI. Research Progress of Virus-like Particles Vaccine[J]. Current Biotechnology, 2024, 14(5): 776-784.
赵尉吏, 吕娜, 李会强, 何亚辉, 李露露, 梁明丽, 李岩异. 病毒样颗粒疫苗研究进展[J]. 生物技术进展, 2024, 14(5): 776-784.
| 药品名称 | 上市时间 | 抗原表位 | 表达系统 | 佐剂 | 生产商 |
|---|---|---|---|---|---|
| Engerix-B® | 1989 | S抗原 | 酿酒酵母 | 氢氧化铝 | 英国葛兰素史克公司 |
| Fendrix® | 2005 | S抗原 | 酿酒酵母 | AS04 | 英国葛兰素史克公司 |
| Heplisav-B® | 2017 | S抗原 | 汉逊酵母 | CpG1018 | 美国德纳维制药公司 |
| Recombivax HB® | 2018 | S抗原 | 酿酒酵母 | 硫酸铝 | 美国默沙东公司 |
| PreHevbrio®(Sci-B-Vac) | 2021 | S抗原、pre-S1抗原和pre-S2抗原 | 哺乳动物(CHO细胞) | 氢氧化铝 | 美国VBI疫苗公司 |
Table 1 HBV based on VLPs on the market
| 药品名称 | 上市时间 | 抗原表位 | 表达系统 | 佐剂 | 生产商 |
|---|---|---|---|---|---|
| Engerix-B® | 1989 | S抗原 | 酿酒酵母 | 氢氧化铝 | 英国葛兰素史克公司 |
| Fendrix® | 2005 | S抗原 | 酿酒酵母 | AS04 | 英国葛兰素史克公司 |
| Heplisav-B® | 2017 | S抗原 | 汉逊酵母 | CpG1018 | 美国德纳维制药公司 |
| Recombivax HB® | 2018 | S抗原 | 酿酒酵母 | 硫酸铝 | 美国默沙东公司 |
| PreHevbrio®(Sci-B-Vac) | 2021 | S抗原、pre-S1抗原和pre-S2抗原 | 哺乳动物(CHO细胞) | 氢氧化铝 | 美国VBI疫苗公司 |
| 药品名称 | 上市时间 | 抗原表位 | 表达系统 | 佐剂 | 生产商 |
|---|---|---|---|---|---|
| Cervarix® | 2006 | L1 HPV 16 L1 HPV 18 | 昆虫-杆状病毒 | 氢氧化铝ASO4 | 英国葛兰素史克公司 |
| Gardasil® | 2009 | L1 HPV 6 L1 HPV 11 L1 HPV 16 L1 HPV 18 | 酿酒酵母 | 羟基磷酸硫酸铝 | 美国默沙东公司 |
| Gardasil9® | 2014 | L1 HPV 6 L1 HPV 11 L1 HPV 16 L1 HPV 18 L1 HPV 31 L1 HPV 33 L1 HPV 45 L1 HPV 52 L1 HPV 58 | 酿酒酵母 | 羟基磷酸硫酸铝 | 美国默沙东公司 |
| 馨可宁® | 2019 | L1 HPV 16 L1 HPV 18 | 大肠杆菌 | 氢氧化铝 | 厦门万泰 |
| 沃泽惠® | 2022 | L1 HPV 16 L1 HPV 18 | 毕赤酵母 | 磷酸铝 | 沃森生物 |
Table 2 HPV prophylactic vaccines based on VLPs on the market
| 药品名称 | 上市时间 | 抗原表位 | 表达系统 | 佐剂 | 生产商 |
|---|---|---|---|---|---|
| Cervarix® | 2006 | L1 HPV 16 L1 HPV 18 | 昆虫-杆状病毒 | 氢氧化铝ASO4 | 英国葛兰素史克公司 |
| Gardasil® | 2009 | L1 HPV 6 L1 HPV 11 L1 HPV 16 L1 HPV 18 | 酿酒酵母 | 羟基磷酸硫酸铝 | 美国默沙东公司 |
| Gardasil9® | 2014 | L1 HPV 6 L1 HPV 11 L1 HPV 16 L1 HPV 18 L1 HPV 31 L1 HPV 33 L1 HPV 45 L1 HPV 52 L1 HPV 58 | 酿酒酵母 | 羟基磷酸硫酸铝 | 美国默沙东公司 |
| 馨可宁® | 2019 | L1 HPV 16 L1 HPV 18 | 大肠杆菌 | 氢氧化铝 | 厦门万泰 |
| 沃泽惠® | 2022 | L1 HPV 16 L1 HPV 18 | 毕赤酵母 | 磷酸铝 | 沃森生物 |
| 1 | KUSHNIR N, STREATFIELD S J, YUSIBOV V. Virus-like particles as a highly efficient vaccine platform: diversity of targets and production systems and advances in clinical development[J]. Vaccine, 2012, 31(1): 58-83. |
| 2 | KLEID D G, YANSURA D, SMALL B, et al.. Cloned viral protein vaccine for foot-and-mouth disease: responses in cattle and swine[J]. Science, 1981, 214(4525): 1125-1129. |
| 3 | LMICHEL M, TIOLLAIS P. Hepatitis B vaccines: protective efficacy and therapeutic potential[J]. Pathol. Biol. (Paris), 2010, 58(4): 288-295. |
| 4 | LINDA H, LUA L, FRANK S, et al.. Bioengineering virus-like particles as vaccines[J].Biotechnol. Bioengin., 2014, doi:10.1002/bit.25159[2024-08-02]. . |
| 5 | WHITACRE D C, LEE B O, MILICH D R. Use of hepadnavirus core proteins as vaccine platforms[J]. Expert Rev. Vaccines, 2009, 8(11): 1565-1573. |
| 6 | SAUNDERS K, SAINSBURY F, LOMONOSSOFF G P. Efficient generation of cowpea mosaic virus empty virus-like particles by the proteolytic processing of precursors in insect cells and plants[J]. Virology, 2009, 393(2): 329-337. |
| 7 | KIRNBAUER R, TAUB J, GREENSTONE H, et al.. Efficient self-assembly of human papillomavirus type 16 L1 and L1-L2 into virus-like particles[J]. Int. J. Mol. Sci., 1993, 67(12): 6929-6936. |
| 8 | PORTA C, KOTECHA A, BURMAN A, et al.. Rational engineering of recombinant picornavirus capsids to produce safe, protective vaccine antigen[J/OL]. PLoS Pathog., 2013, 9(3): e1003255[2024-08-02]. . |
| 9 | HEWAT E A, BOOTH T F, ROY P. Structure of correctly self-assembled bluetongue virus-like particles[J]. J. Struct. Biol., 1994, 112(3): 183-191. |
| 10 | CONNER M E, ZARLEY C D, HU B, et al.. Virus-like particles as a rotavirus subunit vaccine[J]. J. Interv. Cardiol., 1996, 174(): S88-S92. |
| 11 | KANG S M, KIM M C, COMPANS R W. Virus-like particles as universal influenza vaccines[J]. Expert Rev. Vaccines, 2012, 11(8): 995-1007. |
| 12 | FREIVALDS J, DISLERS A, OSE V, et al.. Highly efficient production of phosphorylated hepatitis B core particles in yeast Pichia pastoris [J]. Protein Expr. Purif., 2011, 75(2): 218-224. |
| 13 | KALNCIEMA I, SKRASTINA D, OSE V, et al.. Potato virus Y-like particles as a new carrier for the presentation of foreign protein stretches[J]. Mol. Biotechnol., 2012, 52(2): 129-139. |
| 14 | IBAÑEZ L I, ROOSE K, DE FILETTE M, et al.. M2e-displaying virus-like particles with associated RNA promote T helper 1 type adaptive immunity against influenza A[J/OL]. PLoS One, 2013, 8(3): e59081[2024-08-02]. . |
| 15 | SAINSBURY F, SAUNDERS K, ALJABALI A A A, et al.. Peptide-controlled access to the interior surface of empty virus nanoparticles[J]. ChemBioChem, 2011, 12(16): 2435-2440. |
| 16 | KUZNETSOV Y G, MCPHERSON A. Atomic force microscopy in imaging of viruses and virus-infected cells[J]. Microbiol. Mol. Biol. Rev., 2011, 75(2): 268-285. |
| 17 | ZHAO Q, ALLEN M J, WANG Y, et al.. Disassembly and reassembly improves morphology and thermal stability of human papillomavirus type 16 virus-like particles[J]. Nanomedicine, 2012, 8(7): 1182-1189. |
| 18 | EMILHIET P, DOSSET P, GODEFROY C, et al.. Nanoscale topography of hepatitis B antigen particles by atomic force microscopy[J]. Biochimie, 2011, 93(2): 254-259. |
| 19 | PEASE L F, LIPIN D I, TSAI D H, et al.. Quantitative characterization of virus-like particles by asymmetrical flow field flow fractionation, electrospray differential mobility analysis, and transmission electron microscopy[J]. Biotechnol. Bioeng., 2009, 102(3): 845-855. |
| 20 | DESCHUYTENEER M, ELOUAHABI A, PLAINCHAMP D, et al.. Molecular and structural characterization of the L1 virus-like particles that are used as vaccine antigens in Cervarix™, the AS04-adjuvanted HPV-16 and-18 cervical cancer vaccine[J]. Hum. Vaccin., 2010, 6(5): 407-419. |
| 21 | SHAH K, CHAUBEY P, MISRA N. Bioinformatics approach for screening and modeling of putative T cell epitopes from Por B protein of Neisseria meningitides as vaccine constructs[J]. Indian J. Biotechnol., 2010, 9(4):351-359. |
| 22 | MOHSEN M O, GOMES A C, CABRAL-MIRANDA G, et al.. Delivering adjuvants and antigens in separate nanoparticles eliminates the need of physical linkage for effective vaccination[J]. J. Control. Release, 2017, 251: 92-100. |
| 23 | NOAD R, ROY P. Virus-like particles as immunogens[J]. Trends Microbiol., 2003, 11(9): 438-444. |
| 24 | BACHMANN M F, JENNINGS G T. Vaccine delivery: a matter of size, geometry, kinetics and molecular patterns[J]. Nat. Rev. Immunol., 2010, 10(11): 787-796. |
| 25 | MOHSEN M O, ZHA L, CABRAL-MIRANDA G, et al.. Major findings and recent advances in virus-like particle (VLP)-based vaccines[J]. Semin. Immunol., 2017, 34: 123-132. |
| 26 | FRIETZE K M, PEABODY D S, CHACKERIAN B. Engineering virus-like particles as vaccine platforms[J]. Curr. Opin. Virol., 2016, 18: 44-49. |
| 27 | FIEDLER J D, HIGGINSON C, HOVLID M L, et al.. Engineered mutations change the structure and stability of a virus-like particle[J]. Biomacromolecules, 2012, 13(8): 2339-2348. |
| 28 | MOHSEN M O, BALKE I, ZINKHAN S, et al.. A scalable and highly immunogenic virus-like particle-based vaccine against SARS-CoV-2[J]. Allergy, 2022, 77(1): 243-257. |
| 29 | SASAGAWA T, PUSHKO P, STEERS G, et al.. Synthesis and assembly of virus-like particles of human papillomaviruses type 6 and type 16 in fission yeast Schizosaccharomyces pombe [J]. Virology, 1995, 206(1): 126-135. |
| 30 | LUCKOW V A, LEE S C, BARRY G F, et al.. Efficient generation of infectious recombinant baculoviruses by site-specific transposon-mediated insertion of foreign genes into a baculovirus genome propagated in Escherichia coli [J]. J. Virol., 1993, 67(8): 4566-4579. |
| 31 | ESTES M L, EWING-WILSON D, CHOU S M, et al.. Chloroquine neuromyotoxicity. clinical and pathologic perspective[J]. Am. J. Med., 1987, 82(3): 447-455. |
| 32 | BETENBAUGH M, YU M, KUEHL K, et al.. Nucleocapsid- and virus-like particles assemble in cells infected with recombinant baculoviruses or vaccinia viruses expressing the M and the S segments of Hantaan virus[J]. Virus Res., 1995, 38(2-3): 111-124. |
| 33 | ROLDÃO A, MELLADO M C M, CASTILHO L R, et al.. Virus-like particles in vaccine development[J]. Expert Rev. Vaccines, 2010, 9(10): 1149-1176. |
| 34 | GURRAMKONDA C, ADNAN A, GÄBEL T, et al.. Simple high-cell density fed-batch technique for high-level recombinant protein production with Pichia pastoris: application to intracellular production of hepatitis B surface antigen[J/OL]. Microb. Cell Fact., 2009, 8: 13[2024-08-02]. . |
| 35 | GAVILANES F, GONZALEZ-ROS J M, PETERSON D L. Structure of hepatitis B surface antigen. Characterization of the lipid components and their association with the viral proteins[J]. J. Biol. Chem., 1982, 257(13): 7770-7777. |
| 36 | PARASHAR U. Advisory Committee on Immunization Practices (ACIP), Centers for Disease Control and Prevention (CDC): Prevention of rotavirus gastroenteritis among infants and children. Recommendations of the Advisory Committee on Immunization Practices (ACIP)[J/OL]. Aust. J. Rural. Health, 2006, doi:10.1111/j.1440-1584.2007.00928.x[2024-08-02]. . |
| 37 | VESIKARI T, FINN A, VAN DAMME P, et al.. Immunogenicity and safety of a 3-antigen hepatitis B vaccine vs a single-antigen hepatitis B vaccine: a phase 3 randomized clinical trial[J/OL]. JAMA Netw. Open, 2021, 4(10): e2128652[2024-08-02]. . |
| 38 | GUPTA A K, MACLEOD M A, ABRAMOVITS W. GARDASIL 9 (human papillomavirus 9-valent vaccine, recombinant)[J]. Skinmed, 2016, 14(1): 33-37. |
| 39 | HU Y M, HUANG S J, CHU K,et al.. Safety of an Escherichia coli-expressed bivalent human papillomavirus (types 16 and 18) L1 virus-like particle vaccine an open-label phase I clinical trial[J]. Human Vaccines Immunother., 2014, 10(2): 1-7. |
| 40 | ANASTASIA P, CYRA P, ALEXIS P, et al.. Safety of human papillomavirus vaccines: an updated review[J]. Drug Safety Int. J. Med. Toxicol. Drug Exp., 2018, 41:329-346. |
| 41 | LANINI S, GARBUGLIA A R, LAPA D, et al.. Epidemiology of HEV in the mediterranean basin: 10-year prevalence in Italy[J/OL]. BMJ Open, 2015, 5(7): e007110[2024-08-02]. . |
| 42 | WU X, CHEN P, LIN H, et al.. Hepatitis E virus: current epidemiology and vaccine[J]. Hum. Vaccin. Immunother., 2016, 12(10): 2603-2610. |
| 43 | HOLLA R P, AHMAD I, AHMAD Z, et al.. Molecular virology of hepatitis E virus[J]. Semin. Liver Dis., 2013, 33(1): 3-14. |
| 44 | BRADLEY D W. Hepatitis E virus: a brief review of the biology, molecular virology, and immunology of a novel virus[J]. J. Hepatol., 1995, 22(1 ): 140-145. |
| 45 | Robust manufacturing and comprehensive characterization of recombinant hepatitis E virus-like particles in Hecolin?[J].Vaccine, 2014, 32(32):4039-4050. |
| 46 | MAZALOVSKA M, KOUOKAM J C. Progress in the production of virus-like particles for vaccination against hepatitis E virus[J/OL]. Viruses, 2020, 12(8): 826[2024-08-02]. . |
| 47 | ARORA N, ANBALAGAN LC, PANNU A K. Towards eradication of malaria: is the WHO's RTS, S/AS01 vaccination effective enough?[J]. Risk Manag. Healthc. Policy, 2021, 14: 1033-1039. |
| 48 | CALLAWAY E. The next generation of coronavirus vaccines: a graphical guide[J]. Nature, 2023, 614(7946): 22-25. |
| 49 | THOMS F, JENNINGS G T, MAUDRICH M, et al.. Immunization of cats to induce neutralizing antibodies against Fel d 1, the major feline allergen in human subjects[J]. J. Allergy Clin. Immunol., 2019, 144(1): 193-203. |
| 50 | YILMAZ I C, IPEKOGLU E M, BULBUL A, et al.. Development and preclinical evaluation of virus-like particle vaccine against COVID-19 infection[J]. Allergy, 2022, 77(1): 258-270. |
| 51 | PILLET S, ARUNACHALAM P S, ANDREANI G, et al.. Safety, immunogenicity, and protection provided by unadjuvanted and adjuvanted formulations of a recombinant plant-derived virus-like particle vaccine candidate for COVID-19 in nonhuman Primates[J]. Cell. Mol. Immunol., 2022, 19(2): 222-233. |
| 52 | NG K K, PENDÁS-FRANCO N, ROJO J, et al.. Crystal structure of Norwalk virus polymerase reveals the carboxyl terminus in the active site cleft[J]. J. Biol. Chem., 2004, 279(16): 16638-16645. |
| 53 | JAZAYERI S D, POH C L. Development of universal influenza vaccines targeting conserved viral proteins[J/OL]. Vaccines (Basel), 2019, 7(4): 169[2024-08-02]. . |
| 54 | BUFFIN S, PEUBEZ I, BARRIÈRE F, et al.. Influenza A and B virus-like particles produced in mammalian cells are highly immunogenic and induce functional antibodies[J]. Vaccine, 2019, 37(46): 6857-6867. |
| 55 | TISSOT A C, RENHOFA R, SCHMITZ N, et al.. Versatile virus-like particle carrier for epitope based vaccines[J/OL]. PLoS One, 2010, 5(3): e9809[2024-08-02]. . |
| 56 | CHANG M O, SUZUKI T, SUZUKI H, et al.. HIV-1 Gag-virus-like particles induce natural killer cell immune responses via activation and maturation of dendritic cells[J]. J. Innate Immun., 2012, 4(2): 187-200. |
| 57 | CHANG M O, SUZUKI T, YAMAMOTO N, et al.. HIV-1 Gag-virus-like particles inhibit HIV-1 replication in dendritic cells and T cells through IFN-α-dependent upregulation of APOBEC3G and 3F[J]. J. Innate Immun., 2012, 4(5-6): 579-590. |
| [1] | Nana ZHOU, Xiaoyan WANG, Yuan ZHANG, Jing WANG, Guomiao ZHAO, Chao WEI, Kai YANG, Tai AN. Progress on the Production Technology of Recombinant Therapeutic Proteins [J]. Current Biotechnology, 2021, 11(6): 724-731. |
| [2] | Dan LI, Haozhi SONG, Weisong GAO, Xingjian LIU, Zhifang ZHANG, Yinyu LI. Prokaryotic Expression and Immunogenicity Detection of the H Protein of Peste des Petits Ruminants Virus [J]. Current Biotechnology, 2021, 11(6): 770-776. |
| [3] | YANG Xin, SONG Haozhi, LIU Xingjian, LI Yinyu, ZHANG Zhifang*. Expression of Chicken Interferon Kappa in Silkworm-baculovirus Expression System and the Antiviral Activity Assay [J]. Curr. Biotech., 2020, 10(3): 251-255. |
| [4] | WANG Xianxiang1,2, ZHAO Ze2, WANG Peng2, LIU Xingjian2, HU Xiaoyuan2, ZHANG Zhifang2, LI Yinv2, FANG Lingli1, YE Aihua1*. Expression of Ovis aries λ3 Interferon in Silkworm-baculovirus Expression System and the Antiviral Activity Assay [J]. Curr. Biotech., 2019, 9(5): 502-508. |
| [5] | DU Mengtan, LIU Xingjian, HU Xiaoyuan, ZHANG Zhifang, LI Yinv*. The Production Method of Adeno-associated Virus and its Application in Gene Therapy [J]. Curr. Biotech., 2019, 9(4): 326-331. |
| [6] | ZHAO Lulu1, ZHAO Ze2, YANG Xin1, LIU Xingjian1, HU Xiaoyuan1, ZHANG Zhifang1, LI Yinv1*. Expression of Bovine λ3 Interferon in Silkworm-baculovirus Expression System and the Antiviral Activity Assay [J]. Curr. Biotech., 2018, 8(5): 420-425. |
| [7] | LU Nian1, LIU Xingjian1, HU Xiaoyuan1, LI Yinv1, YI Yongzhu2, ZHANG Zhifang1*. Package of Recombinant Adeno-associated Virus Type 2 Based on BmNPV-silkworm Expression System [J]. Curr. Biotech., 2018, 8(1): 71-77. |
| [8] | YANG Qin, CHEN Hai-qin*, CHEN Si, GU Zhen-nan, ZHANG Hao, CHEN Yong-quan, CHEN Wei. Expression of the ω-3 Fatty Acid Desaturase from Mortierella alpina in Wheat-germ Cell-free Protein Expression System [J]. Curr. Biotech., 2016, 6(5): 346-351. |
| [9] | LIU Xing-jian1, YANG Xin1, ZHANG Zhi-fang1, LI Yi-nv1, YI Yong-zhu2, HU Xiao-yuan1*. Expression and Antiviral Activity Detection of Feline Interferon ω-like in Silkworm [J]. Curr. Biotech., 2015, 5(6): 441-445. |
| [10] | ZHANG Yun-peng, WEN Tong, JIANG Wei*. The Research Progress of Escherichia coli Expression Systems and Yeast Expression Systems [J]. Curr. Biotech., 2014, 4(6): 389-393. |
| [11] | YAO Zheng-ying, ZHANG Wei-ming, SUN Li-jun*. Research Progress in Biotechnological Applications of Oil Bodies [J]. Curr. Biotech., 2014, 4(5): 318-324. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||