| 1 | GRIESHABER D, MACKENZIE R, VÖRÖS J, et al.. Electrochemical biosensors-sensor principles and architectures[J]. Sensors, 2008, 8(3): 1400-1458. | 
																													
																							| 2 | MAITY S, SAHU P P. Electrochemical sensors: core principle, new fabrication trends, and their applications[M]. Biosensors in food safety and quality: fundamentals and applications. 2022: 47-62. | 
																													
																							| 3 | XU L, DUAN J, CHEN J, et al.. Recent advances in rolling circle amplification-based biosensing strategies—a review[J/OL]. Anal. Chim. Acta, 2021, 1148: 238187[2023-11-10]. . | 
																													
																							| 4 | SOARES R R G, MADABOOSI N, NILSSON M. Rolling circle amplification in integrated microsystems: an uncut gem toward massively multiplexed pathogen diagnostics and genotyping[J]. Acc. Chem. Res., 2021, 54(21): 3979-3990. | 
																													
																							| 5 | WANG J, ZHOU H, LIU J, et al.. Electrochemical detection of DNA by formation of efficient electron transfer pathways through adsorbing gold nanoparticles to DNA modified electrodes[J/OL]. Microchem. J., 2021, 169: 106581[2023-11-10]. . | 
																													
																							| 6 | WANG Y, WANG X, GAILING O, et al.. Visual detection of Fusarium proliferatum based on dual-cycle signal amplification and T5 exonuclease[J]. RSC Adv., 2020, 10(58): 35131-35135. | 
																													
																							| 7 | OU L J, SUN A M, LIU K J. Rolling circle amplification-based biosensors[J]. Anal. Lett., 2015, 48(8): 1199-216. | 
																													
																							| 8 | 占忠旭,刘巨,陈博璐,等.滚环扩增信号放大技术在生物检测中应用的研究进展[J].生物工程学报,2019,35(7):1206-1213. | 
																													
																							| 9 | TIAN W, LI P, HE W, et al.. Rolling circle extension-actuated loop-mediated isothermal amplification (RCA-LAMP) for ultrasensitive detection of microRNAs[J]. Biosens. Bioelectron., 2019, 128: 17-22. | 
																													
																							| 10 | WU D, YI X, XIA N. Electrochemical biosensors for microRNA detection using duplex-specific nuclease based signal amplification strategies[J]. Int. J. Electrochem. Sci., 2020, 15(12): 12136-12148. | 
																													
																							| 11 | WEI H, BU S, ZHANG W, et al.. An electrochemical biosensor for the detection of pathogenic bacteria based on dual signal amplification of Cu3(PO4)2-mediated click chemistry and DNAzymes[J]. Analyst, 2021, 146(15): 4841-4847. | 
																													
																							| 12 | HAJIAN R, TAYEBI Z, SHAMS N. Fabrication of an electrochemical sensor for determination of doxorubicin in human plasma and its interaction with DNA[J]. J. Pharm. Anal., 2017, 7(1): 27-33. | 
																													
																							| 13 | ZHAN X, YANG S, HUANG G, et al.. Streptavidin-functionalized terahertz metamaterials for attomolar exosomal microRNA assay in pancreatic cancer based on duplex-specific nuclease-triggered rolling circle amplification[J/OL]. Biosens. Bioelectron., 2021, 188: 113314[2023-11-11]. . | 
																													
																							| 14 | CHEN H, WU S, DONG F, et al.. A novel chemiluminescence immunoassay for highly sensitive and specific detection of protein using rolling circle amplification and the multiplex binding system[J]. Sens. Actuat. B Chem., 2015, 221: 328-333. | 
																													
																							| 15 | XIE Y, DU J, LIU Z, et al..  miR-6875-3p promotes the proliferation, invasion and metastasis of hepatocellular carcinoma via BTG2/FAK/Akt pathway[J/OL]. J. Exp. Clin. Cancer Res., 2019, 38(1): 7[2023-11-10]. . | 
																													
																							| 16 | HUANG R, HE L, XIA Y, et al.. A sensitive aptasensor based on a hemin/G-quadruplex-assisted signal amplification strategy for electrochemical detection of gastric cancer exosomes[J/OL]. Small, 2019, 15(19): e1900735[2023-11-11]. . | 
																													
																							| 17 | DING C, WANG N, ZHANG J, et al.. Rolling circle amplification combined with nanoparticle aggregates for highly sensitive identification of DNA and cancer cells[J]. Biosens. Bioelectron., 2013, 42: 486-491. | 
																													
																							| 18 | SHENG Q, CHENG N, BAI W, et al.. Ultrasensitive electrochemical detection of breast cancer cells based on DNA-rolling-circle-amplification-directed enzyme-catalyzed polymerization[J]. Chem. Commun. Camb. Engl., 2015, 51(11): 2114-2117. | 
																													
																							| 19 | ZHAN Z, LI H, LIU J, et al.. A competitive enzyme linked aptasensor with rolling circle amplification (ELARCA) assay for colorimetric detection of Listeria monocytogenes [J/OL]. Food Contr., 2020, 107: 106806[2023-11-10]. . | 
																													
																							| 20 | XU J, GUO J, MAINA S W, et al.. An aptasensor for staphylococcus aureus based on nicking enzyme amplification reaction and rolling circle amplification[J]. Anal. Biochem., 2018, 549: 136-142. | 
																													
																							| 21 | TANG S, TONG P, LI H, et al.. Ultrasensitive electrochemical detection of Pb²⁺ based on rolling circle amplification and quantum dots tagging[J]. Biosens. Bioelectron., 2013, 42: 608-611. | 
																													
																							| 22 | QING M, YUAN Y, CAI W, et al.. An ultrasensitive electrochemical biosensor based on multifunctional hemin/G-quadruplex nanowires simultaneously served as bienzyme and direct electron mediator for detection of lead ion[J]. Sens. Actuat. B Chem., 2018, 263: 469-475. |