| 1 | GILL F D D. IOC world bird list (version 13.1)[EB/OL]. [2022-12-20] International Ornithologists' Union, 2022. . | 
																													
																							| 2 | O'DONNELL S, LOGAN C J, CLAYTON N S. Specializations of birds that attend army ant raids: an ecological approach to cognitive and behavioral studies[J]. Behav. Processes, 2012, 91(3): 267-274. | 
																													
																							| 3 | ABRAHAMCZYK S, KESSLER M. Morphological and behavioural adaptations to feed on nectar: how feeding ecology determines the diversity and composition of hummingbird assemblages[J]. J. Ornithol., 2015, 156(2): 333-347. | 
																													
																							| 4 | PR G. Ecology and evolution of Darwin's finches[M]. Princeton University Press, 1999: 565-566. | 
																													
																							| 5 | OLSEN A M. Feeding ecology is the primary driver of beak shape diversification in waterfowl[J]. Funct. Ecol., 2017, 31(10): 1985-1995. | 
																													
																							| 6 | WILMAN H, BELMAKER J, SIMPSON J, et al.. EltonTraits 1.0: species-level foraging attributes of the world's birds and mammals[J/OL]. Ecology, 2014, 95(7): 2027[2014-07-26]. . | 
																													
																							| 7 | BURIN G, KISSLING W D, GUIMARÃES P R, et al.. Omnivory in birds is a macroevolutionary sink[J/OL]. Nat. Commun., 2016, 7: 11250[2022-12-30]. . | 
																													
																							| 8 | KARASOV W H, CARLOS M, CAVIEDES-VIDAL E. Ecological physiology of diet and digestive systems[J/OL]. Annu. Rev. Physiol., 2011, 73(1): 69[2022-12-30]. . | 
																													
																							| 9 | MCNAB B K. The economics of temperature regulation in neotropical bats[J]. Comp. Biochem. Physiol., 1969, 31(2): 227-268. | 
																													
																							| 10 | MCNAB B K. The influence of food habits on the energetics of eutherian mammals[J]. Ecol. Monogr., 1986, 56(1): 1-19. | 
																													
																							| 11 | MCNAB B K. Food habits and the basal rate of metabolism in birds[J]. Oecologia, 1988, 77(3): 343-349. | 
																													
																							| 12 | MCNAB B K. Energetics, body size, and the limits to endothermy[J]. J. Zool., 2010, 199(1): 1-29. | 
																													
																							| 13 | BROWN W L, WILSON E O. Character displacement[J/OL]. Syst. Zool., 1956, 5(2): 49[2023-07-26]. . | 
																													
																							| 14 | GRANT P R, GRANT B R. Evolution of character displacement in Darwin's finches[J]. Science, 2006, 313(5784): 224-226. | 
																													
																							| 15 | ROGGE M M. The role of impaired mitochondrial lipid oxidation in obesity[J]. Biol. Res. Nurs., 2009, 10(4): 356-373. | 
																													
																							| 16 | OSELLAME L D, BLACKER T S, DUCHEN M R. Cellular and molecular mechanisms of mitochondrial function[J]. Best Pract. Res. Clin. Endocrinol. Metab., 2012, 26(6): 711-723. | 
																													
																							| 17 | KUSMINSKI C M, SCHERER P E. Mitochondrial dysfunction in white adipose tissue[J]. Trends Endocrinol. Metab., 2012, 23(9): 435-443. | 
																													
																							| 18 | BALLARD J W O, WHITLOCK M C. The incomplete natural history of mitochondria[J]. Mol. Ecol., 2004, 13(4): 729-744. | 
																													
																							| 19 | RAND D M. The units of selection on mitochondrial DNA[J]. Annu. Rev. Ecol. Syst., 2001, 32: 415-448. | 
																													
																							| 20 | SHEN Y Y, LIANG L, ZHU Z H, et al.. Adaptive evolution of energy metabolism genes and the origin of flight in bats[J]. Proc. Natl. Acad. Sci. USA, 2010, 107(19): 8666-8671. | 
																													
																							| 21 | YANG Y, XU S, XU J, et al.. Adaptive evolution of mitochondrial energy metabolism genes associated with increased energy demand in flying insects[J/OL]. PLoS ONE, 2014, 9(6): e99120[2023-07-26]. . | 
																													
																							| 22 | RAMIREZ J, FOLKOW L P, BLIX A S. Hypoxia tolerance in mammals and birds: from the wilderness to the clinic[J]. Annu. Rev. Physiol., 2007, 69: 113-143. | 
																													
																							| 23 | FENG P, ZHAO H, LU X. Evolution of mitochondrial DNA and its relation to basal metabolic rate[J]. Mitochon. DNA, 2015, 26(4): 566-571. | 
																													
																							| 24 | SHEN Y Y, SHI P, SUN Y B, et al.. Relaxation of selective constraints on avian mitochondrial DNA following the degeneration of flight ability[J]. Genome Res., 2009, 19(10): 1760-1765. | 
																													
																							| 25 | KOICHIRO T, GLEN S, SUDHIR K. MEGA11: molecular evolutionary genetics analysis version 11[J/OL]. Mol. Biol. Evol., 2021, (7): 7[2022-12-30]. . | 
																													
																							| 26 | EDGAR R C. MUSCLE: a multiple sequence alignment method with reduced time and space complexity[J/OL]. BMC Bioinform., 2004, 5: 113[2022-12-30]. . | 
																													
																							| 27 | WERTHEIM J O, MURRELL B, SMITH M D, et al.. LAX: detecting relaxed selection in a phylogenetic framework[J]. Mol. Biol. Evol., 2015, 32(3): 820-832 | 
																													
																							| 28 | YANG Z. PAML 4: phylogenetic analysis by maximum likelihood[J]. Mol. Biol. Evol., 2007, 24(8): 1586-1591. | 
																													
																							| 29 | CHOI Y, SIMS G E, MURPHY S, et al.. Predicting the functional effect of amino acid substitutions and indels[J/OL]. PLoS ONE, 2012, 7(10): e46688[2022-12-30]. . | 
																													
																							| 30 | BIASINI M, BIENERT S, WATERHOUSE A, et al.. SWISS-MODEL: mdelling protein tertiary and quaternary structure using evolutionary information[J]. Nucleic Acids Res., 2014, 42: 252-258. | 
																													
																							| 31 | 胡田伟, 王世航, 张东升. 线粒体基因组在红血南极鱼和白血南极鱼中的适应性进化[J]. 基因组学与应用生物学, 2021, 40 (Z4): 3448-3457. | 
																													
																							| 32 | 李福来. 鸟类食性与消化道的特点[J]. 生物学通报, 1984, 19(2):24-26+10. | 
																													
																							| 33 | ZHANG G, LI C, LI Q, et al.. Comparative genomics reveals insights into avian genome evolution and adaptation[J]. Science, 2014, 346(6215): 1311-1320. | 
																													
																							| 34 | 周明. 鸟类TLRs基因的适应性进化研究[D]. 雅安: 四川农业大学, 2019. | 
																													
																							| 35 | SUN Y B, SHEN Y Y, IRWIN D M, et al.. Evaluating the roles of energetic functional constraints on teleost mitochondrial-encoded protein evolution[J]. Mol. Biol. Evol., 2011, 28(1): 39-44. | 
																													
																							| 36 | OMETTO L, LI M, BRESADOLA L, et al.. Rates of evolution in stress-related genes are associated with habitat preference in two Cardamine lineages[J/OL]. BMC Evol. Biol., 2012, 12: 7[2022-12-30]. . | 
																													
																							| 37 | STROHM J H T, GWIAZDOWSKI R A, HANNER R. Fast fish face fewer mitochondrial mutations: patterns of dN/dS across fish mitogenomes[J]. Gene, 2015, 572(1): 27-34. | 
																													
																							| 38 | LU Y, XING H, ZHANG D. Evidence for relaxed selection of mitogenome in rapid-flow cyprinids[J]. Genes Genom., 2019, 41(7): 863-869. | 
																													
																							| 39 | KISSLING W D, SEKERCIOGLU C H, JETZ W. Bird dietary guild richness across latitudes, environments and biogeographic regions[J]. Glob. Ecol. Biogeogr., 2012, 21(3): 328-340. | 
																													
																							| 40 | MACARTHUR R, LEVINS R. The limiting similarity, convergence, and divergence of coexisting species[J]. Am. Nat., 1967, 101(921): 377-385. | 
																													
																							| 41 | MACARTHUR R H, PIANKA E R. On optimal use of a patchy environment[J]. Am. Nat., 1966, 100(916): 603-609. |