Current Biotechnology ›› 2023, Vol. 13 ›› Issue (6): 821-826.DOI: 10.19586/j.2095-2341.2023.0074
• Reviews • Next Articles
Lanlan ZHANG1(
), Caihua LI1, Yuzhu FANG1, Yan SONG1, Wanlin KANG1, Zhiyu LI1, Xiao ZHANG1(
), Rui ZHANG2(
)
Received:2023-05-29
Accepted:2023-10-16
Online:2023-11-25
Published:2023-12-12
Contact:
Xiao ZHANG,Rui ZHANG
张兰兰1(
), 李才华1, 方雨竹1, 宋岩1, 康婉琳1, 李志宇1, 张晓1(
), 张锐2(
)
通讯作者:
张晓,张锐
作者简介:张兰兰 E-mail: 2978701985@qq.com
基金资助:CLC Number:
Lanlan ZHANG, Caihua LI, Yuzhu FANG, Yan SONG, Wanlin KANG, Zhiyu LI, Xiao ZHANG, Rui ZHANG. Progress on the Application of Mitochondrial SSR Molecular Markers in Plants[J]. Current Biotechnology, 2023, 13(6): 821-826.
张兰兰, 李才华, 方雨竹, 宋岩, 康婉琳, 李志宇, 张晓, 张锐. 线粒体SSR分子标记在植物中的应用进展[J]. 生物技术进展, 2023, 13(6): 821-826.
| 名称 | 内容 | 特征 |
|---|---|---|
| ChloroMitoSSRDB | 检测细胞器基因组中完美型和不完美型SSR数据库 | 提供1 982个mtSSR |
| ChloroMitoSSRDB 2.00 | 提供4 454个细胞器基因组的访问,显示28 851个线粒体完美SSR和197 009个线粒体不完美SSR,35 250个MISA发现的完美SSR和3 211个MISA复合SSR以及相关信息,如重复序列的位置(编码和非编码)、重复大小和重复频率,基序和多态性长度,以及引物对 | 继ChloroMitoSSRDB 1.00升级版,提供4 454个细胞器基因组数据、完美型/不完美型SSR数据等 |
| MitoSatPlant | 包含从92个绿色植物线粒体基因组中提取的完美、不完美和复合SSR的信息 | 提供绿色植物mtSSR中完美型/不完美型数据信息 |
| MSDB | 提供37 680个基因组中超过40亿个微卫星的集合 | 用于简化、交互式分析和可视化,是迄今为止访问和分析多物种微卫星数据最全面、最具注释性和最新的数据库 |
| pSATdb | 包含28 710个mtSSR,跨越1 576个属的5 976个mtDNA序列 | 对后生动物和绿色植物中1 576个属的5 976个mtDNA序列进行了鉴定 |
| VfODB | 蚕豆基因组数据库,检索到3 461个标记,代表12种类型(CAPS、EST、EST-SSR、基因标记、INDEL、同工酶、ISSR、RAPD、SCAR、RGA、SNP和SSR) | 综合了种质信息、表达序列标签、表达序列标签简单序列重复和线粒体简单序列重复、microRNA目标标记和蚕豆遗传图谱的综合数据库 |
| MISA | 是一种在核苷酸序列中查找微卫星的工具,除了检测完整的微卫星外,MISA还能够找到由多个简单序列基序组成的完美复合微卫星 | |
| SSRome | 探索6 533种生物中的微卫星信息 | 除了所有线粒体和叶绿体基因组以及NCBI提供的表达序列标签外,在所有分类群中还发现了1.58亿个微卫星基序 |
| PineElm_SSRdb | 从菠萝基因组、叶绿体、线粒体和EST序列中鉴定SSR | 在菠萝中共鉴定出359 511个SSR(基因组序列356 385个,叶绿体序列45个,线粒体序列249个,EST序列2 832个) |
| 名称 | 内容 | 特征 |
|---|---|---|
| ChloroMitoSSRDB | 检测细胞器基因组中完美型和不完美型SSR数据库 | 提供1 982个mtSSR |
| ChloroMitoSSRDB 2.00 | 提供4 454个细胞器基因组的访问,显示28 851个线粒体完美SSR和197 009个线粒体不完美SSR,35 250个MISA发现的完美SSR和3 211个MISA复合SSR以及相关信息,如重复序列的位置(编码和非编码)、重复大小和重复频率,基序和多态性长度,以及引物对 | 继ChloroMitoSSRDB 1.00升级版,提供4 454个细胞器基因组数据、完美型/不完美型SSR数据等 |
| MitoSatPlant | 包含从92个绿色植物线粒体基因组中提取的完美、不完美和复合SSR的信息 | 提供绿色植物mtSSR中完美型/不完美型数据信息 |
| MSDB | 提供37 680个基因组中超过40亿个微卫星的集合 | 用于简化、交互式分析和可视化,是迄今为止访问和分析多物种微卫星数据最全面、最具注释性和最新的数据库 |
| pSATdb | 包含28 710个mtSSR,跨越1 576个属的5 976个mtDNA序列 | 对后生动物和绿色植物中1 576个属的5 976个mtDNA序列进行了鉴定 |
| VfODB | 蚕豆基因组数据库,检索到3 461个标记,代表12种类型(CAPS、EST、EST-SSR、基因标记、INDEL、同工酶、ISSR、RAPD、SCAR、RGA、SNP和SSR) | 综合了种质信息、表达序列标签、表达序列标签简单序列重复和线粒体简单序列重复、microRNA目标标记和蚕豆遗传图谱的综合数据库 |
| MISA | 是一种在核苷酸序列中查找微卫星的工具,除了检测完整的微卫星外,MISA还能够找到由多个简单序列基序组成的完美复合微卫星 | |
| SSRome | 探索6 533种生物中的微卫星信息 | 除了所有线粒体和叶绿体基因组以及NCBI提供的表达序列标签外,在所有分类群中还发现了1.58亿个微卫星基序 |
| PineElm_SSRdb | 从菠萝基因组、叶绿体、线粒体和EST序列中鉴定SSR | 在菠萝中共鉴定出359 511个SSR(基因组序列356 385个,叶绿体序列45个,线粒体序列249个,EST序列2 832个) |
| 1 | SORANZO N, PROVAN J, POWELL W. An example of microsatellite length variation in the mitochondrial genome of conifers[J]. Genome, 1999, 42(1): 158-161. |
| 2 | 张晓,张锐,侯思宇,等.高等植物线粒体基因组研究进展[J].中国农业科技导报, 2011, 13(4): 23-31. |
| 3 | CHEVIGNY N, SCHATZ-DAAS D, LOTFI F, et al.. DNA repair and the stability of the plant mitochondrial genome[J/OL]. Int. J. Mol. Sci., 2020, 21(1): 328[2023-10-19]. . |
| 4 | ZHONG Y, YU R, CHEN J, et al.. Highly active repeat-mediated recombination in the mitogenome of the holoparasitic plant Aeginetia indica [J/OL]. Front. Plant Sci., 2022, 13: 988368[2023-10-19]. . |
| 5 | FILIP E, SKUZA L. Horizontal gene transfer involving chloroplasts[J/OL]. Int. J. Mol. Sci., 2021, 22(9): 4484[2023-10-19]. . |
| 6 | UNSELD M, MARIENFELD J R, BRANDT P, et al.. The mitochondrial genome of Arabidopsis thaliana contains 57 genes in 366, 924 nucleotides[J]. Nat. Genet., 1997, 15(1): 57-61. |
| 7 | MUKHOPADHYAY J, WAI A, HUTCHISON L J, et al.. The mitogenome of Urnula craterium [J]. Can. J. Microbiol., 2022, 68(8): 561-568. |
| 8 | 张晓,李才华,王婧,等.基因加倍对棉花线粒体atpA基因RNA编辑率的影响[J].生物技术进展, 2022, 12(5): 737-745. |
| 9 | 叶楠.银杏线粒体基因组研究[D].南京:南京林业大学,2018. |
| 10 | WEI S, WANG X, BI C, et al.. Assembly and analysis of the complete Salix purpurea L. (Salicaceae) mitochondrial genome sequence[J/OL]. SpringerPlus, 2016, 5(1): 1894[2023-10-19]. . |
| 11 | 李绪英,肖炳光,高玉龙,等.烟草叶绿体基因组和线粒体基因组SSR位点分析[J].西北植物学报,2011,31(12):2399-2405. |
| 12 | BI C, PATERSON A H, WANG X, et al.. Analysis of the complete mitochondrial genome sequence of the diploid cotton Gossypium raimondii by comparative genomics approaches[J/OL]. BioMed. Res. Int., 2016, 2016: 5040598[2023-10-19]. . |
| 13 | KUNTAL H, SHARMA V. In silico analysis of SSRs in mitochondrial genomes of plants[J]. Omics A J. Integr. Biol., 2011, 15(11): 783-789. |
| 14 | ISHII T, TAKAHASHI C, IKEDA N, et al.. Mitochondrial microsatellite variability in common wheat and its ancestral species[J]. Genes Genet. Syst., 2006, 81(3): 211-214. |
| 15 | NISHIKAWA T, VAUGHAN D A, KADOWAKI K. Phylogenetic analysis of Oryza species, based on simple sequence repeats and their flanking nucleotide sequences from the mitochondrial and chloroplast genomes[J]. Theor. Appl. Genet., 2005, 110(4): 696-705. |
| 16 | JARAMILLO-CORREA J P, AGUIRRE-PLANTER E, EGUIARTE L E, et al.. Evolution of an ancient microsatellite hotspot in the conifer mitochondrial genome and comparison with other plants[J]. J. Mol. Evol., 2013, 76(3): 146-157. |
| 17 | TOLLEFSRUD M M, KISSLING R, GUGERLI F, et al.. Genetic consequences of glacial survival and postglacial colonization in Norway spruce: combined analysis of mitochondrial DNA and fossil pollen[J]. Mol. Ecol., 2008, 17(18): 4134-4150. |
| 18 | TOLLEFSRUD M M, SØNSTEBØ J H, BROCHMANN C, et al.. Combined analysis of nuclear and mitochondrial markers provide new insight into the genetic structure of North European Picea abies [J]. Heredity, 2009, 102(6): 549-562. |
| 19 | SPERISEN C, BÜCHLER U, GUGERLI F, et al.. Tandem repeats in plant mitochondrial genomes: application to the analysis of population differentiation in the conifer Norway spruce[J]. Mol. Ecol., 2001, 10(1): 257-263. |
| 20 | GODBOUT J, FAZEKAS A, NEWTON C H, et al.. Glacial vicariance in the Pacific Northwest: evidence from a lodgepole pine mitochondrial DNA minisatellite for multiple genetically distinct and widely separated refugia[J]. Mol. Ecol., 2008, 17(10): 2463-2475. |
| 21 | SEMERIKOV V L, PUTINTSEVA Y A, ORESHKOVA N V, et al.. Development of new mitochondrial DNA markers in Scots pine (Pinus sylvestris L.) for population genetic and phylogeographic studies[J]. Genetika, 2015, 51(12): 1386-1390. |
| 22 | SEMERIKOV V L, SEMERIKOVA S A, POLEZHAEVA M A, et al.. Southern montane populations did not contribute to the recolonization of West Siberian Plain by Siberian larch (Larix sibirica): a range-wide analysis of cytoplasmic markers[J]. Mol. Ecol., 2013, 22(19): 4958-4971. |
| 23 | AIZAWA M, YOSHIMARU H, TAKAHASHI M, et al.. Genetic structure of Sakhalin spruce (Picea glehnii) in northern Japan and adjacent regions revealed by nuclear microsatellites and mitochondrial gene sequences[J]. J. Plant Res., 2015, 128(1): 91-102. |
| 24 | HOSAKA K, SANETOMO R. Comparative differentiation in mitochondrial and chloroplast DNA among cultivated potatoes and closely related wild species[J]. Genes Genet. Syst., 2009, 84(5): 371-378. |
| 25 | VILLARREAL J C, FORREST L L, MCFARLAND K, et al.. Chloroplast, mitochondrial, and nuclear microsatellites from the southern Appalachian hornwort, Nothoceros aenigmaticus (Dendrocerotaceae) [J]. Am. J. Bot., 2012, 99(3): 88-90. |
| 26 | 张先启,郭献平,刘玉芬,等.板栗品种线粒体SSR遗传多样性分析[J].北京农学院学报,2012,27(2):17-20. |
| 27 | RAJENDRAKUMAR P, BISWAL A K, BALACHANDRAN S M, et al.. A mitochondrial repeat specific marker for distinguishing wild abortive type cytoplasmic male sterile rice lines from their cognate isogenic maintainer lines[J]. Crop Sci., 2007, 47(1): 207-211. |
| 28 | WANG Q, ZHANG Y, FANG Z, et al.. Chloroplast and mitochondrial SSR help to distinguish allo-cytoplasmic male sterile types in cabbage (Brassica oleracea L. var. capitata) [J]. Mol. Breed., 2012, 30(2): 709-716. |
| 29 | ZHANG X, MENG Z G, ZHOU T, et al. Mitochondrial SCAR and SSR Markers for distinguishing cytoplasmic male sterile lines from their isogenic maintainer lines in cotton[J/OL]. Plant Breed., 2012, 131(4): 563-570. |
| 30 | DING J, SUN G, LI Q, et al.. Analysis of mitochondrial DNA polymorphism in the atpA region and design of simple sequence repeat and sequence characterized amplified region markers for distinguishing AD1, CMS-D2 and CMS-D8 cytoplasms in cotton (Gossypium spp.)[J]. Plant Breed., 2022, 141(3): 451-459. |
| 31 | 李凤霞,杨爱国,崔萌萌,等.四种细胞质来源的烟草不育系线粒体SSR位点差异[J].作物学报,2011,37(12):2285-2292. |
| 32 | SABLOK G, MUDUNURI S B, PATNANA S, et al.. ChloroMitoSSRDB: open source repository of perfect and imperfect repeats in organelle genomes for evolutionary genomics[J]. DNA Res. Int. J. Rapid Publ. Rep. Genes Genomes, 2013, 20(2): 127-133. |
| 33 | SABLOK G, PADMA RAJU G V, MUDUNURI S B, et al.. ChloroMitoSSRDB 2.00: more genomes, more repeats, unifying SSRs search patterns and on-the-fly repeat detection[J/OL]. Database J. Biol. Databases Curation, 2015, 2015: bav084[2023-10-19]. . |
| 34 | KUMAR M, KAPIL A, SHANKER A. MitoSatPlant: mitochondrial microsatellites database of viridiplantae[J]. Mitochondrion, 2014, 19: 334-337. |
| 35 | BEIER S, THIEL T, MÜNCH T, et al.. MISA-web: a web server for microsatellite prediction[J]. Bioinformatics, 2017, 33(16): 2583-2585. |
| 36 | KUMAR S, SINGH A, ShANKER A. pSATdb: a database of mitochondrial common, polymorphic, and unique microsatellites[J]. Life Sci. Alliance, 2022, 5(6): 1-7. |
| 37 | MOKHTAR M M, HUSSEIN E H A, EL-ASSAL S E S, et al.. VfODB: a comprehensive database of ESTs, EST-SSRs, mtSSRs, microRNA-target markers and genetic maps in Vicia faba [J/OL]. AoB Plants, 2020, 12(6): plaa064[2023-10-19]. . |
| 38 | CHAUDHARY S, MISHRA B K, VIVEK T, et al.. PineElm_SSRdb: a microsatellite marker database identified from genomic, chloroplast, mitochondrial and EST sequences of pineapple (Ananas comosus (L.) Merrill)[J/OL]. Hereditas, 2016, 153: 16[2023-10-19]. . |
| 39 | AVVARU A K, SHARMA D, VERMA A, et al.. MSDB: a comprehensive, annotated database of microsatellites[J]. Nucleic Acids Res., 2020, 48(D1): 155-159. |
| 40 | MOKHTAR M M, ATIA M A M. SSRome: an integrated database and pipelines for exploring microsatellites in all organisms[J]. Nucleic Acids Res., 2019, 47(D1): 244-252. |
| [1] | Jiangtao YANG, Yaohui HUANG, Zhixing WANG, Xujing WANG, Yue JIAO. Current Status of Research Application and Safety Regulation of Plant Bioreactors [J]. Current Biotechnology, 2025, 15(4): 565-572. |
| [2] | Wenxuan PU, Xi DAI, Jiani YUE, Xiuxia FU, Na SONG, Wei LI, Yu PENG. Research Progress of Iron Signaling and its Role in Plant-pathogen Interaction [J]. Current Biotechnology, 2025, 15(1): 1-10. |
| [3] | Haixia PENG, Shijuan WANG, Zhuanxia XIN, Li MEI, Meng MA. A Low-cost, Efficient and Easy-to-operate Method for Transgenic Plant Identification [J]. Current Biotechnology, 2024, 14(6): 1016-1023. |
| [4] | Xinye WANG, Lei LI, Yahua HU, Huan HE, Hongxia LI, Qiong LI, Liang ZHAO, Gangrong ZHANG, Qi PAN, Xuan TANG, Pudi ZHANG, Wenjing JU, Zhengshuo YANG. Isolation and Screening of Phosphate Solubilizing Bacteria and its Growth-promoting Effect on Glutinous Sorghum for Brewing [J]. Current Biotechnology, 2024, 14(5): 832-838. |
| [5] | Yijun LI, Lin XIA, Xiaobei YANG, Xiaodong XIE, Feng LI, Jun YANG, Qianji NING, Mingzhu WU. Research Progress on Light-regulated Synthesis of Plant Polyphenols [J]. Current Biotechnology, 2024, 14(4): 509-518. |
| [6] | Dezheng YANG, Huixian FU, Suqin XIAO, Lingyun LEI, Tianshi LI, Zaiquan CHENG, Li LIU. Research Progress on Genetic Basis and Molecular Regulation Mechanism of Rice Plant Architecture [J]. Current Biotechnology, 2024, 14(3): 349-359. |
| [7] | Jiaqi SUN, Jia GUO, Chuang ZHANG, Qing LIU, Ziyu WANG, Hanchao XIA, Buxuan QIAN, Fangfang ZHAO, Qi WANG, Jianfeng LIU, Xiangguo LIU. Research Progress of Phosphite Dehydrogenase in Genetically Engineered Microorganisms and Plants [J]. Current Biotechnology, 2024, 14(2): 173-181. |
| [8] | Guowei YU, Hongbao XUE, Junsong YANG, Changqing LIU, Qiang FANG. Research Advances on Anti-obesity by Plant Essential Oil and Volatile Components [J]. Current Biotechnology, 2024, 14(2): 196-204. |
| [9] | Haitao WANG, Jia SONG, Ping YU, Xuejiao CHEN. Optimization of Preparation Technology of Lactiplantibacillus plantarum HCS03-001 Freeze-dried Powder and its Anti-Helicobacter pylori Function [J]. Current Biotechnology, 2024, 14(2): 287-294. |
| [10] | Weijun PU, Binglan TAN, Danchen HE, Pan ZHANG, Yubin LI, Li ZHU. Development of InDel Molecular Markers in Sorghum Using Re-sequencing Technology [J]. Current Biotechnology, 2023, 13(5): 730-741. |
| [11] | Lanyi ZHI, Zhe LIU, Qiang WANG, Aimin SHI. Construction and Characterization of Plant-based Egg Liquid System [J]. Current Biotechnology, 2023, 13(5): 760-770. |
| [12] | Siyu GAI, Ziqi CHEN, Hanchao XIA, Rengui ZHAO, Xiangguo LIU. Research Progress of CRISPR/Cas9 Technology in Plant Promoter Editing [J]. Current Biotechnology, 2023, 13(3): 321-328. |
| [13] | Xiaoran LIU, Yulei ZHANG, Yupeng WU. Stress Effects, Enrichment and Transport Characteristics of Three Plants on Complex Heavy Metals [J]. Current Biotechnology, 2023, 13(3): 425-434. |
| [14] | Fangnan XIAO, Xue LYU, Jiajia YUAN, Mingying ZHANG, Wen XING, Yuan ZHOU. The Effect of Hematopoietic Stem Cell Transplantation Conditions on Hematopoietic Reconstruction in Mice [J]. Current Biotechnology, 2023, 13(1): 124-130. |
| [15] | Hui SUN, Chunyi ZHANG, Ling JIANG. Progress of Plant Molecular Farming in Pharmaceutical Use [J]. Current Biotechnology, 2023, 13(1): 65-71. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||