| 1 | KARASHIMA S, OSAKA I. Rapidity and precision of steroid hormone measurement[J/OL]. J. Clin. Med., 2022, 11(4): 956[2023-07-22]. . | 
																													
																							| 2 | XIONG Y, LENG Y, LI X, et al.. Emerging strategies to enhance the sensitivity of competitive ELISA for detection of chemical contaminants in food samples[J/OL]. Trac Trends Anal. Chem., 2020, 126: 115861[2023-07-22]. . | 
																													
																							| 3 | 雷豆豆, 马润然, 王伽伯, 等. 食品中农药残留的新型生物检测技术研究进展[J]. 生物技术进展, 2023, 13(1): 1-10. | 
																													
																							| 4 | TSAGKARIS A S, NELIS J L D, ROSS G M S, et al.. Critical assessment of recent trends related to screening and confirmatory analytical methods for selected food contaminants and allergens[J/OL]. Trac Trends Anal. Chem., 2019, 121: 115688[2023-07-22]. . | 
																													
																							| 5 | LI Y, ZHANG G, MAO X, et al.. High sensitivity immunoassays for small molecule compounds detection-novel noncompetitive immunoassay designs[J]. Trac Trends Anal. Chem., 2018, 103: 198-208. | 
																													
																							| 6 | ZHAO F, SHI R, LIU R, et al.. Application of phage-display developed antibody and antigen substitutes in immunoassays for small molecule contaminants analysis: a mini-review[J/OL]. Food Chem., 2021, 339: 128084[2023-07-22]. . | 
																													
																							| 7 | LI P, DENG S, ZECH XU Z. Toxicant substitutes in immunological assays for mycotoxins detection: a mini review[J/OL]. Food Chem., 2021, 344: 128589[2023-07-22]. . | 
																													
																							| 8 | PAN S Y, CHIA Y C, YE E, et al.. Immunomodulatory potential of anti-idiotypic antibodies for the treatment of autoimmune diseases[J/OL]. Future Sci., 2020, 7(2): FSO648[2023-07-22]. . | 
																													
																							| 9 | STANOVA A K, RYABKOVA V A, UTEKHIN S V, et al.. Anti-idiotypic agonistic antibodies: candidates for the role of universal remedy[J/OL]. Antibodies, 2020, 9(2): 19[2023-07-22]. . | 
																													
																							| 10 | MURPHY W J, LONGO D L. A possible role for anti-idiotype antibodies in SARS-CoV-2 infection and vaccination[J]. N. Engl. J. Med., 2022, 386(4): 394-396. | 
																													
																							| 11 | SPINKS C A, WANG B, MILLS E N C, et al.. Production and characterization of monoclonal anti‐idiotype antibody mimics for the pyrethroid insecticides and the herbicide paraquat[J]. Food Agric. Immunol., 1993, 5(1): 13-25. | 
																													
																							| 12 | CHEN L, HU X, XING Y, et al.. Highly sensitive immunochromatographic assay for simultaneous determination of azaperone and azaperol in pork[J/OL]. Food Chem. X, 2023, 17: 100525[2023-07-22]. . | 
																													
																							| 13 | LIAO J, ZHUO X, PAN B, et al.. Synthesis and preliminary immunologic properties of di-/ trisaccharide-conjugates related to Bacillus anthracis [J/OL]. Bioorg. Med. Chem. Lett., 2022, 76: 128986[2023-07-22]. . | 
																													
																							| 14 | JONES W, HARVEY D, MITCHELL R. Production of anti-idiotypic monoclonal antibody mimics for coronatine[J]. Food Agric. Immunol., 2002, 14(4): 301-311. | 
																													
																							| 15 | JONES W T, HARVEY D, SUTHERLAND P W, et al.. Production of anti-idiotypic monoclonal antibodies that mimic the phytotoxin dothistromin[J]. Food Agric. Immunol., 1998, 10(1): 67-78. | 
																													
																							| 16 | 高莉, 杨丽芳, 邱仁东, 等. 一种特异性结合 E2-E2抗体复合物的抗体及其应用: CN116041527A[P]. 2023-05-02. | 
																													
																							| 17 | KIRSCH R D, BEALE D, HE M, et al.. Anti-anti-idiotypic (Ab3) antibodies that bind progesterone-11alpha-bovine serum albumin differ in their combining sites from antibodies raised directly against the antigen[J]. Immunology, 2000, 100(2): 152-164. | 
																													
																							| 18 | SHI L, YU T, LUO M, et al.. Preparation monoclonal β-type anti-idiotype antibody of zearalenone and development of green ELISA quantitative detecting technique[J]. Prep. Biochem. Biotechnol., 2020, 50(4): 419-424. | 
																													
																							| 19 | ZHANG C, ZHANG Q, TANG X, et al.. Development of an anti-idiotypic VHH antibody and toxin-free enzyme immunoassay for ochratoxin A in cereals[J/OL]. Toxins, 2019, 11(5): 280[2023-07-22]. . | 
																													
																							| 20 | HU L, LIU A, CHEN W, et al.. A non-toxic enzyme-linked immunosorbent assay for aflatoxin B1 using anti-idiotypic antibodies as substitutes[J]. J. Sci. Food Agric., 2017, 97(5): 1640-1645. | 
																													
																							| 21 | SCHULZ K, PÖHLMANN C, DIETRICH R, et al.. Electrochemical biochip assays based on anti-idiotypic antibodies for rapid and automated on-site detection of low molecular weight toxins[J/OL]. Front. Chem., 2019, 7: 31[2023-07-22]. . | 
																													
																							| 22 | TANG X, LI P, ZHANG Q, et al.. Time-resolved fluorescence immunochromatographic assay developed using two idiotypic nanobodies for rapid, quantitative, and simultaneous detection of aflatoxin and zearalenone in maize and its products[J]. Anal. Chem., 2017, 89(21): 11520-11528. | 
																													
																							| 23 | AKKOYUN A, KOHEN V F, BILITEWSKI U. Detection of sulphamethazine with an optical biosensor and anti-idiotypic antibodies[J]. Sens. Actuat. B Chem., 2000, 70(1-3): 12-18. | 
																													
																							| 24 | SCHULZ K, PÖHLMANN C, DIETRICH R, et al.. An electrochemical fiveplex biochip assay based on anti-idiotypic antibodies for fast on-site detection of bioterrorism relevant low molecular weight toxins[J/OL]. Toxins, 2019, 11(12): 696[2023-07-22]. . | 
																													
																							| 25 | XU Y, XIONG L, LI Y, et al.. Anti-idiotypic nanobody as citrinin mimotope from a naive alpaca heavy chain single domain antibody library[J]. Anal. Bioanal. Chem., 2015, 407(18): 5333-5341. | 
																													
																							| 26 | SHU M, XU Y, WANG D, et al.. Anti-idiotypic nanobody: a strategy for development of sensitive and green immunoassay for fumonisin B₁[J]. Talanta, 2015, 143: 388-393. | 
																													
																							| 27 | ZHANG C, ZHANG W, TANG X, et al.. Change of amino acid residues in idiotypic nanobodies enhanced the sensitivity of competitive enzyme immunoassay for mycotoxin ochratoxin A in cereals[J/OL]. Toxins, 2020, 12(4): 273[2023-07-22]. . | 
																													
																							| 28 | QIU Y L, HE Q H, XU Y, et al.. Deoxynivalenol-mimic nanobody isolated from a naïve phage display nanobody library and its application in immunoassay[J]. Anal. Chim. Acta, 2015, 887: 201-208. | 
																													
																							| 29 | QIU Y L, HE Q H, XU Y, et al.. Modification of a deoxynivalenol-antigen-mimicking nanobody to improve immunoassay sensitivity by site-saturation mutagenesis[J]. Anal. Bioanal. Chem., 2016, 408(3): 895-903. | 
																													
																							| 30 | XIONG L, ZHANG X, XU Y, et al.. Anti-idiotypic VHH mediated environmentally friendly immunoassay for citrinin without mycotoxin[J]. Food Agric. Immunol., 2020, 31(1): 968-984. | 
																													
																							| 31 | MILLS C, CAMPBELL K. A new chapter for anti-idiotypes in low molecular weight compound immunoassays[J]. Trends Biotechnol., 2022, 40(9): 1102-1120. | 
																													
																							| 32 | KOBAYASHI N, IWAKAMI K, KOTOSHIBA S, et al.. Immunoenzymometric assay for a small molecule, 11-deoxycortisol, with attomole-range sensitivity employing an scFv-enzyme fusion protein and anti-idiotype antibodies[J]. Anal. Chem., 2006, 78(7): 2244-2253. | 
																													
																							| 33 | KOBAYASHI N, OIWA H, KUBOTA K, et al.. Monoclonal antibodies generated against an affinity-labeled immune complex of an anti-bile acid metabolite antibody: an approach to noncompetitive hapten immunoassays based on anti-idiotype or anti-metatype antibodies[J]. J. Immunol. Meth., 2000, 245(1-2): 95-108. | 
																													
																							| 34 | WILD D. The immunoassay handbook: theory and applications of ligand binding, ELISA and related techniques[M]. USA, The Netherlands: Elsevier Science, 2013. | 
																													
																							| 35 | OMI K, ANDO T, SAKYU T, et al.. Noncompetitive immunoassay detection system for haptens on the basis of antimetatype antibodies[J]. Clin. Chem., 2015, 61(4): 627-635. | 
																													
																							| 36 | SHU M, XU Y, DONG J X, et al.. Development of a noncompetitive idiometric nanobodies phage immumoassay for the determination of fumonisin B1 [J]. Food Agric. Immunol., 2019, 30(1): 510-521. | 
																													
																							| 37 | LI X, LI P, ZHANG Q, et al.. Molecular characterization of monoclonal antibodies against aflatoxins: a possible explanation for the highest sensitivity[J]. Anal. Chem., 2012, 84(12): 5229-5235. | 
																													
																							| 38 | WANG Y, LI P, MAJKOVA Z, et al.. Isolation of alpaca anti-idiotypic heavy-chain single-domain antibody for the aflatoxin immunoassay[J]. Anal. Chem., 2013, 85(17): 8298-8303. | 
																													
																							| 39 | ZHAO Y, LIANG Y, LIU Y, et al.. Phage displayed domain antibody mimics for pyrethroid and its application in immunoassay[J]. Int. J. Agric. Biol. Eng., 2020, 13(2): 235-240. | 
																													
																							| 40 | JI Y, HE Q, XU Y, et al.. Phage displayed anti-idiotypic nanobody mediated immuno-PCR for sensitive and environmentally friendly detection of mycotoxin ochratoxin A[J]. Anal. Methods, 2016, 8(43): 7824-7831. | 
																													
																							| 41 | HUANG W, TU Z, NING Z, et al.. Development of real-time immuno-PCR based on phage displayed an anti-idiotypic nanobody for quantitative determination of citrinin in Monascus [J/OL]. Toxins, 2019, 11(10): 572[2023-07-23]. . | 
																													
																							| 42 | WANG X, HE Q, XU Y, et al.. Anti-idiotypic VHH phage display-mediated immuno-PCR for ultrasensitive determination of mycotoxin zearalenone in cereals[J]. Talanta, 2016, 147: 410-415. | 
																													
																							| 43 | LEI J, LI P, ZHANG Q, et al.. Anti-idiotypic nanobody-phage based real-time immuno-PCR for detection of hepatocarcinogen aflatoxin in grains and feedstuffs[J]. Anal. Chem., 2014, 86(21): 10841-10846. | 
																													
																							| 44 | LEI J, HAN X, TANG X, et al.. Development of anti-idiotypic nanobody-phage based immuno-loop-mediated isothermal amplification assay for aflatoxins in peanuts[J/OL]. Toxins, 2020, 12(9): 565[2023-07-23]. . |