Current Biotechnology ›› 2022, Vol. 12 ›› Issue (5): 737-745.DOI: 10.19586/j.2095-2341.2022.0041
• Articles • Previous Articles Next Articles
Xiao ZHANG1,2(
), Caihua LI1, Jing WANG1, Lanlan ZHANG1, Xiaoyu MOU1, Xinyue WANG1, Liumei GAN1, Pengzhan ZHOU1, Rui ZHANG2(
)
Received:2022-03-18
Accepted:2022-04-22
Online:2022-09-25
Published:2022-09-30
Contact:
Rui ZHANG
张晓1,2(
), 李才华1, 王婧1, 张兰兰1, 牟晓雨1, 王昕玥1, 甘刘美1, 周鹏展1, 张锐2(
)
通讯作者:
张锐
作者简介:张晓 E-mail: enerrgy@126.com;
基金资助:CLC Number:
Xiao ZHANG, Caihua LI, Jing WANG, Lanlan ZHANG, Xiaoyu MOU, Xinyue WANG, Liumei GAN, Pengzhan ZHOU, Rui ZHANG. Impact of Gene Duplication on RNA Editing Rates of Mitochondrial atpA Gene in Cotton (Gossypium hirsutum L.)[J]. Current Biotechnology, 2022, 12(5): 737-745.
张晓, 李才华, 王婧, 张兰兰, 牟晓雨, 王昕玥, 甘刘美, 周鹏展, 张锐. 基因加倍对棉花线粒体atpA基因RNA编辑率的影响[J]. 生物技术进展, 2022, 12(5): 737-745.
| 引物名称 | 引物序列(5'→3') | 长度/nt | Tm/℃ | 用途 |
|---|---|---|---|---|
| atpAF | 5'-ATTTTCAAGTGGATGAGATCGG-3' | 22 | 59 | Southern blot |
| atpAR | 5'-GATCACAGAATCCATTGACAGC-3' | 22 | 61 | Southern blot |
| atpAIF | 5'-CTGGAATTGGCACAATATCGCGAAGTGG-3' | 28 | 65 | IPCRcRT-PCR |
| atpAIR | 5'-TCAACCATTTCCCCAGCTTGAATCTCGT-3' | 28 | 63 | IPCRcRT-PCR |
| atpA-F | 5'-TTACCAGCTCGGGGATCTAATC-3' | 20 | 60 | RT-PCR |
| 1R | 5'-CACTCGCTCGCCTTCGGGTGAGG-3' | 23 | 69 | RT-PCR |
| N2R | 5'-ATCGAGTTAGAGATCGGGTTGCAGG-3' | 25 | 64 | RT-PCR |
| S2R | 5'-ATGGAAATCCTCTTTAGCAGCCTGC-3' | 25 | 62 | RT-PCR |
Table 1 Primers used in this study
| 引物名称 | 引物序列(5'→3') | 长度/nt | Tm/℃ | 用途 |
|---|---|---|---|---|
| atpAF | 5'-ATTTTCAAGTGGATGAGATCGG-3' | 22 | 59 | Southern blot |
| atpAR | 5'-GATCACAGAATCCATTGACAGC-3' | 22 | 61 | Southern blot |
| atpAIF | 5'-CTGGAATTGGCACAATATCGCGAAGTGG-3' | 28 | 65 | IPCRcRT-PCR |
| atpAIR | 5'-TCAACCATTTCCCCAGCTTGAATCTCGT-3' | 28 | 63 | IPCRcRT-PCR |
| atpA-F | 5'-TTACCAGCTCGGGGATCTAATC-3' | 20 | 60 | RT-PCR |
| 1R | 5'-CACTCGCTCGCCTTCGGGTGAGG-3' | 23 | 69 | RT-PCR |
| N2R | 5'-ATCGAGTTAGAGATCGGGTTGCAGG-3' | 25 | 64 | RT-PCR |
| S2R | 5'-ATGGAAATCCTCTTTAGCAGCCTGC-3' | 25 | 62 | RT-PCR |
| 拷贝类型 | 转录起始位点 | 转录终止位点 | |||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 全长拷贝 | 位点/bp | -81 | -82 | -63 | -60 | -59 | +200 | +202 | +210 | ||||||
| 数目 | 10 | 3 | 2 | 1 | 1 | 10 | 6 | 1 | |||||||
| 截短拷贝 | 位点/bp | -81 | -80 | -69 | -77 | +249 | +248 | +250 | +247 | +246 | +224 | +144 | |||
| 数目 | 10 | 5 | 3 | 1 | 10 | 4 | 1 | 1 | 1 | 1 | 1 | ||||
Table 2 Start and termination sites of transcripts of intact and truncated atpA gene in CMS line of cotton
| 拷贝类型 | 转录起始位点 | 转录终止位点 | |||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 全长拷贝 | 位点/bp | -81 | -82 | -63 | -60 | -59 | +200 | +202 | +210 | ||||||
| 数目 | 10 | 3 | 2 | 1 | 1 | 10 | 6 | 1 | |||||||
| 截短拷贝 | 位点/bp | -81 | -80 | -69 | -77 | +249 | +248 | +250 | +247 | +246 | +224 | +144 | |||
| 数目 | 10 | 5 | 3 | 1 | 10 | 4 | 1 | 1 | 1 | 1 | 1 | ||||
| 编辑位点(氨基酸) | 10 | 13 | 324 | 347 | 355 | 393 | 406 | 431 | 472 | 495 | 497 | 500 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 提莫菲维小麦(T. timopheevi) | L-L | L | S-L | — | — | S-L | — | P-L | L | — | P-L | S-F |
| 普通小麦(T. aestivum) | L-L | L | S-L | — | — | S-L | — | P-L | L | — | P-L | S-F |
| 黑小麦(Triticale) | L-L | L | S-L | — | — | S-L | — | P-L | L | — | P-L | S-F |
| 月见草(Oenothera) | L | L-L | S-L | — | — | L | — | L | P-L | — | P-L | F |
| 甜菜(Beta vulgaris L.) | L | L | L | — | — | P-L | — | P-L | P-L | — | L | F |
| 棉花(Gossypium hirsutum L.) | L | L | L | P-S | S-L | L | L-F | P-L | P-L | P-L | T | K |
Table 3 Comparison of cotton atpA editing sites with those of other plants
| 编辑位点(氨基酸) | 10 | 13 | 324 | 347 | 355 | 393 | 406 | 431 | 472 | 495 | 497 | 500 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 提莫菲维小麦(T. timopheevi) | L-L | L | S-L | — | — | S-L | — | P-L | L | — | P-L | S-F |
| 普通小麦(T. aestivum) | L-L | L | S-L | — | — | S-L | — | P-L | L | — | P-L | S-F |
| 黑小麦(Triticale) | L-L | L | S-L | — | — | S-L | — | P-L | L | — | P-L | S-F |
| 月见草(Oenothera) | L | L-L | S-L | — | — | L | — | L | P-L | — | P-L | F |
| 甜菜(Beta vulgaris L.) | L | L | L | — | — | P-L | — | P-L | P-L | — | L | F |
| 棉花(Gossypium hirsutum L.) | L | L | L | P-S | S-L | L | L-F | P-L | P-L | P-L | T | K |
| 编辑位点 | 1 039 bp | 1 064 bp | 1 216 bp | 1 292 bp | 1 415 bp | 1 484 bp |
|---|---|---|---|---|---|---|
| 氨基酸的变化 | P-S | S-L | L-F | P-L | P-L | P-L |
| (N)atpA-1 | 100% | 100% | 100% | 100% | 100% | 100% |
| (S)atpA-1 | 100% | 85% | 100% | 92% | 100% | 100% |
| (N)atpA-2 | 55% | 37% | 55% | 27% | — | — |
| (S)atpA-2 | 100% | 90% | 100% | 100% | — | — |
Table 4 Comparison of RNA editing rates of intact and truncated copies of atpA gene in CMS line(S) and maintainer line(N) of cotton
| 编辑位点 | 1 039 bp | 1 064 bp | 1 216 bp | 1 292 bp | 1 415 bp | 1 484 bp |
|---|---|---|---|---|---|---|
| 氨基酸的变化 | P-S | S-L | L-F | P-L | P-L | P-L |
| (N)atpA-1 | 100% | 100% | 100% | 100% | 100% | 100% |
| (S)atpA-1 | 100% | 85% | 100% | 92% | 100% | 100% |
| (N)atpA-2 | 55% | 37% | 55% | 27% | — | — |
| (S)atpA-2 | 100% | 90% | 100% | 100% | — | — |
| 1 | 张晓,张锐,孙国清,等.优化的反向PCR结合TAIL-PCR法克隆棉花线粒体atpA双拷贝基因及其侧翼序列[J].生物工程学报,2012,28(1): 104-115. |
| 2 | CHATEIGNER-BOUTIN A L, SMALL I. Plant RNA editing[J]. RNA Biol., 2014, 7(2): 213-219. |
| 3 | 张晓,张锐,侯思宇,等.高等植物线粒体基因组研究进展[J].中国农业科技导报,2011, 13(4): 23-31. |
| 4 | SATOH M, KUBO T, MIKAMI T.The Owen mitochondrial genome in sugar beet (Beta vulgaris L.): possible mechanisms of extensive rearrangements and the origin of the mitotype-unique regions[J]. Theor. Appl. Genet.,2006, 113(3): 477-484. |
| 5 | HANDA H. The complete nucleotide sequence and RNA editing content of the mitochondrial genome of rapeseed (Brassica napus L.): comparative analysis of the mitochondrial genomes of rapeseed and Arabidopsis thaliana [J]. Nucl. Acids Res., 2003,31(20): 5907-5916. |
| 6 | PICARDI E, HORNER D S, CHIARA M,et al.. Large-scale detection and analysis of RNA editing in grape mtDNA by RNA deep-sequencing[J]. Nucl. Acids Res., 2010,38(14):4755-4767. |
| 7 | NOTSU Y, MASOOD S, NISHIKAWA T, et al.. The complete sequence of the rice (Oryza sativa L.) mitochondrial genome: frequent DNA sequence acquisition and loss during the evolution of flowering plants[J]. Mol. Genet. Genom., 2002, 268(4): 434-445. |
| 8 | GIEGÉ P, BRENNICKE A. RNA editing in Arabidopsis mitochondria effects 441 C to U changes in ORFs[J]. Proc. Natl. Acad. Sci. USA, 1999,96(26):15324-15329. |
| 9 | FANG Y, WU H, ZHANG T, et al.. A complete sequence and transcriptomic analyses of date palm (Phoenix dactylifera L.) mitochondrial genome[J/OL]. PLoS ONE, 2012, 7(5): e37164[2022-04-19]. . |
| 10 | HE P, XIAO G, LIU H, et al.. Two pivotal RNA editing sites in the mitochondrial atp1mRNA are required for ATP synthase to produce sufficient ATP for cotton fiber cell elongation[J]. New Phytol., 2018, 218(1): 167-182. |
| 11 | CHAW S V M, SHIH A V C, WANG D, et al.. The mitochondrial genome of the gymnosperm Cycas taitungensis contains a novel family of short interspersed elements, Bpu sequences, and abundant RNA editing sites[J]. Mol. Biol. Evol., 2008, 25(3): 603-615. |
| 12 | SMALL I D, PEETERS N. The PPR motif-a TPR-related motif prevalent in plant organellar proteins[J]. Trends Biochem. Sci., 2000, 25(2): 46-47. |
| 13 | 何鹏,陈海燕,俞嘉宁.PPR蛋白参与RNA编辑机制的研究进展[J].西北植物学报,2013,33(2):415-421. |
| 14 | 陈倩,刘石锋,洪广成,等.植物线粒体RNA编辑调控研究进展[J].分子植物育种,2019,17(3):869-876. |
| 15 | DONIWA Y, UETA M, MASAMI U,et al.. The involvement of a PPR protein of the P subfamily in partial RNA editing of an Arabidopsis mitochondrial transcript[J]. Gene, 2010, 454 (1-2): 39-46. |
| 16 | OKUDA K, HABATA Y, KOBAYASHI Y, et al.. Amino acid sequence variations in Nicotiana CRR4 orthologs determine the species specific efficiency of RNA editing in plastids[J]. Nucl. Acid. Res., 2008, 36(19): 6155-6164. |
| 17 | MYOUGA, OKUDA K, MOTOHASHI R, et al.. Conserved domain structure of pentatricopeptide repeat protein involved in chloroplast RNA editing[J]. Proc. Natl. Acad. Sci. USA, 2007, 104(19): 8178-8183. |
| 18 | CHATEIGNER B A L, RAMOS-VEGA M, GUEVARA-GARCÍA A, et al.. CLB19, a pentatricopeptide repeat protein required for editing of rpoA and clpP chloroplast transcripts[J]. Plant J., 2008, 56(4): 590-602. |
| 19 | SUNG T Y, TSENG C C, HSIEH M H. The SLO1 PPR protein is required for RNA editing at multiple sites with similar upstream sequences in Arabidopsis mitochondria [J]. Plant J., 2010, 63(3): 499-511. |
| 20 | ZHU Q, DUGARDEYN J, ZHANG C, et al.. SLO2, a mitochondrial pentatricopeptide repeat protein affecting several RNA editing sites, is required for energy metabolism[J]. Plant J., 2010,71(5): 836-849. |
| 21 | VERBITSKIY D, MERWE J A, ZEHRMANN A, et al.. The E-Class PPR protein MEF3 of Arabidopsis thaliana can also function in mitochondrial RNA editing with an additional DYW domain[J]. Plant Cell Phys., 2011, 53(2): 358-367. |
| 22 | OKUDA K, CHATEIGNER-BOUTIN A L, NAKAMURA T, et al.. Pentatricopeptide repeat proteins with the DYW motif have distinct molecular functions in RNA editing and RNA cleavage in Arabidopsis chloroplasts [J]. Plant Cell, 2009, 21(1):146-156. |
| 23 | ZHOU W, CHENG Y, YAP A, et al.. The Arabidopsis gene YS1 encoding a DYW protein is required for editing of rpoB transcripts and the rapid development of chloroplasts during early growth[J]. Plant J., 2009, 58(1): 82-96. |
| 24 | CAO Z L, YU Q B, SUN Y, et al.. A point mutation in the pentatricopeptide repeat motif of the AtECB2 protein causes delayed chloroplast development[J]. J. Integr. Plant Biol., 2011, 53(4): 258-269. |
| 25 | YU Q B, JIANG Y, CHONG K, et al.. AtECB2, a pentatricopeptide repeat protein, is required for chloroplast transcript accD RNA editing and early chloroplast biogenesis in Arabidopsis thaliana [J]. Plant J., 2009,59(6): 1011-1023. |
| 26 | CAI W, JI D, PENG L, et al.. LPA66 is required for editing psbF chloroplast transcripts in Arabidopsis [J]. Plant Physl., 2009, 150(3): 1260-1271. |
| 27 | ROBBINS J C, HELLER W P, HANSON M R. A comparative genomics approach identifies a PPR-DYW protein that is essential for C to U editing of the Arabidopsis chloroplast accD transcript[J]. RNA,2009,15(6): 1142-1153. |
| 28 | HAMMANI K, OKUDA K, TANZ-SANDRA K, et al.. A study of new Arabidopsis chloroplast RNA editing mutants reveals general features of editing factors and their target sites[J]. Plant Cell, 2009, 21(11): 3686-3699. |
| 29 | HAMMANI K, FRANCS-SMALL C C, TAKENAKA M, et al.. The pentatricopeptide repeat protein OTP87 is essential for RNA editing of nad7 and atp1 transcripts in Arabidopsis mitochondria[J]. J. Biol. Chem., 2011, 286(24): 21361-21371. |
| 30 | ZEHRMANN A, VERNITSKIY D, VANDEMERWE J A, et al.. A DYW domain-containing pentatricopeptide repeat protein is required for RNA editing at multiple sites in mitochondria of Arabidopsis thaliana [J]. Plant Cell, 2009, 21(2): 558-567. |
| 31 | ZEHRMANN A, MERWE JVAN DER, VERBITSKIY D, et al.. The DYW-class PPR protein MEF7 is required for RNA editing at four sites in mitochondria of Arabidopsis Thaliana [J]. RNA Biol., 2012, 9 (2): 155-161. |
| 32 | TAKENAKA M. MEF9, an E-subclass pentatricopeptide repeat protein, is required for an RNA editing event in the nad7 transcript in mitochondria of Arabidopsis [J]. Plant Phys., 2012,152 (2):939-947. |
| 33 | VERBITSKIY D, ZEHRMANN A, BRENNICKE A, et al.. A truncated MEF11 protein shows site-specific effects on mitochondrial RNA editing[J]. Plant Sign. Beh., 2010, 5(5): 558-560. |
| 34 | VERBITSKIY D, HÄRTEL B, ZEHRMANN A, et al.. The DYW-E-PPR protein MEF14 is required for RNA editing at site matR-1895 in mitochondria of Arabidopsis thaliana [J]. Sci Dir., 2011, 585(4): 700-704. |
| 35 | SALONE V, RUDINGER M, PLOSAKIEWICZ M, et al.. A hypothesis on the identification of the editing enzyme in plant organelles[J]. FEBS Lett., 2007, 581(22): 4132-4138. |
| 36 | 马艳莉,俞嘉宁.高等植物叶绿体RNA编辑研究进展[J].生命科学,2009,21(3):439-443. |
| 37 | ZHANG J. Evolution by gene duplication: an update[J]. Trends Ecol Evol., 2003, 18(6): 292-298. |
| 38 | 孙红正,葛颂.重复基因的进化—回顾与进展[J].植物学报,2010,45(1):13-22. |
| 39 | OHNO S. Evolution by Gene Duplication[M]. Berlin: Springer-Verlag, 1970. |
| 40 | OGIHARA Y, YAMAZAKI Y, MURAI K, et al.. Structural dynamics of cereal mitochondrial genomes as revealed by complete nucleotide sequencing of the wheat mitochondrial genome[J]. Nucl. Acids Res., 2005, 33(19): 6235-6250. |
| 41 | CLIFTON S W, MINX P, FAURON C M, et al.. Sequence and comparative analysis of the maize NB mitochondrial genome[J]. Plant Phys., 2004, 136(3): 3486-3503. |
| 42 | UNSELD M, MARIENFELD J R, BRANDT P, et al.. The mitochondrial genome of Arabidopsis thaliana contains 57 genes in 366,924 nucleotides[J]. Nat. Genet., 1997, 15(1): 57-61. |
| 43 | KUBO T, NISHIZAWA S, SUGAWARA A, et al.. The complete nucleotide sequence of the mitochondrial genome of sugar beet (Beta vulgaris L.) reveals a novel gene for tRNACys (GCA)[J]. Nucl. Acids Res., 2000, 28(13): 2571-2576. |
| 44 | HANDA H. The complete nucleotide sequence and RNA editing content of the mitochondrial genome of rapeseed (Brassica napus L.): comparative analysis of the mitochondrial genomes of rapeseed and Arabidopsis thaliana [J]. Nucl. Acids Res., 2003, 31(20): 5907-5916. |
| 45 | ALVERSON A J, WEI X X, RICE D W, et al.. Insights into the evolution of mitochondrial genome size from complete sequences of Citrullus lanatus and Cucurbita pepo (Cucurbitaceae)[J]. Mol. Biol. Evol., 2010, 27(6): 1436-1448. |
| 46 | 张晓,孟志刚,孙国清,等.陆地棉线粒体nad6基因mRNA无常规终止密码子[J]. 中国生物化学与分子生物学报,2014,30(11):1119-1125. |
| 47 | 张晓,张锐, 史计,等.陆地棉胞质雄性不育系与保持系线粒体基因组RFLP分析[J].中国农业科学,2012,45(2):208-217. |
| 48 | KUHN J, BINDER S. RT-PCR analysis of 5' to 3'-end-ligated mRNAs identifies the extremities of cox2 transcripts in pea mitochondria[J]. Nucl. Acids Res., 2002, 30(2): 439-446. |
| 49 | KUREK I, EZRA D, BEGU D, et al.. Studies on the effects of nuclear background and tissue specificity on RNA editing of the mitochondrial ATP synthase subunits α, 6 and 9 in fertile and cytoplasmic male-sterile (CMS) wheat[J]. Theor. Appl. Genet., 1997, 95(8): 1305-1311. |
| 50 | LASER B, KÜCK U. The mitochondrial atpA/atp9 co-transcript in wheat and triticale: RNA processing depends on the nuclear genotype[J]. Curr. Genet., 1995, 29(1): 50-57. |
| 51 | SCHUSTER W, BRENNICKE A. RNA editing of ATPase subunit 9 transcripts in Oenothera mitochondria [J]. FEBS Lett., 1990, 268(1): 252-256. |
| 52 | SENDA M, ONODERA Y, MIKAMI T. Recombination events across the atpA-associated repeated sequences in the mitochondrial genomes of beets[J]. Theor. Appl. Genet., 1998, 96(6-7): 964-968. |
| 53 | OGIHARA Y, YAMAZAKI Y, MURAI K, et al.. Structural dynamics of cereal mitochondrial genomes as revealed by complete nucleotide sequencing of the wheat mitochondrial genome[J]. Nucl. Acids Res., 2005, 33(19): 6235-6250. |
| 54 | CHEN Z, NIE H, GROVER C E, et al.. Entire nucleotide sequences of Gossypium raimondii and G. arboreum mitochondrial genomes revealed A-genome species as cytoplasmic donor of the allotetraploid species[J]. Plant Biol., 2017, 19(3): 484-493. |
| 55 | TANG M, CHEN Z, GROVER C E, et al.. Rapid evolutionary divergence of Gossypium barbadense and G. hirsutum mitochondrial genomes[J]. BMC Genom., 2015, 16(1): 770. |
| 56 | 雷彬彬,李双双,刘国政,等.高等植物线粒体基因组进化分析[J].分子植物育种,2012,10(4):490-500. |
| 57 | IWAHASHI M, NAKAZONO M, KANNO A, et al.. Genetic and physical maps and a clone bank of mitochondrial DNA from rice[J]. Theor. Appl. Genet., 1992, 84(3-4): 275-279. |
| 58 | CLIFTON S W, MINX P, FAURON C M, et al.. Sequence and comparative analysis of the maize NB mitochondrial genome[J]. Plant Phys., 2004, 136(3): 3486-3503. |
| 59 | LNSDALE D M, BREARS T, HODGE T P, et al.. The plant mitochondrial genome: homologous recombination as a mechanism for generating heterogeneity[J]. Phil. Trans. R Soc. Lond B, 1988, 319(1193): 149-163. |
| 60 | MARECHAL A, BRISSON N. Recombination and the maintenance of plant organelle genome stability[J]. New Phytol., 2010, 186(2): 299-317. |
| 61 | WATERS E R, NGUYEN S L, ESKANDAR R, et al.. The recent evolution of a pseudogene: diversity and divergence of a mitochondria-localized small heat shock protein in Arabidopsis thaliana [J]. Genome, 2008, 51(3): 177-186. |
| 62 | MÜLLER K, STORCHOVA H. Transcription of atp1 is influenced by both genomic configuration and nuclear background in the highly rearranged mitochondrial genomes of Silene vulgaris [J]. Plant Mol Biol., 2013, 81(4-5): 495-505. |
| [1] | Xuan DING, Zuying ZHANG, Xiujuan SU, Wenran HU. Optimization of Agrobacterium-mediated Transformation in Cotton Embryonic Tips Through Auxiliary Method [J]. Current Biotechnology, 2025, 15(3): 495-501. |
| [2] | Xiaoyuan WANG, Xi BAI, Jiansheng WANG, Hongzhi CUI. An Overview on Fiber Improvement Transgenic Cotton Studies [J]. Current Biotechnology, 2025, 15(1): 11-18. |
| [3] | Bingying QIU, Xueyao CHEN, Hui WANG, Chenhong LI, Dongsheng ZHANG. Rapid Acquisition of Avian Mitochondrial Genome Based on Gene Capture Method [J]. Current Biotechnology, 2024, 14(4): 618-630. |
| [4] | Pingcheng DUAN, Kai ZHENG, Yuhong ZHANG, Guoli ZHANG, Guoqing SUN. Evaluation of the Anti-disease Effect of Antagonistic Bacterium BJB01 Against Verticillium wilt [J]. Current Biotechnology, 2023, 13(6): 913-918. |
| [5] | Anhong ZHANG, Juanli XIAO, Zhansheng ZHAO, Zhian WANG, Yuan LIU, Xiaoli LUO. Research Progress on Transgenic Insect Resistant Cotton [J]. Current Biotechnology, 2023, 13(5): 657-662. |
| [6] | Jinping CHEN, Quanjia CHEN, Kai ZHENG, Yuanchun PU, Jianglin XU, Ting ZHOU, Yejun YANG, Guoqing SUN. Cotton Drought Resistance Index Screening and Comprehensive Evaluation of Drought Resistance of Germplasm Resources During Germination Period [J]. Current Biotechnology, 2023, 13(4): 556-564. |
| [7] | Rong XIAO, Yunxiao WEI, Yuan WANG, Zhigang MENG, Chengzhen LIANG, Quanjia CHEN, Rui ZHANG. Exploring of Authenticity Identification Method of Transgenic Cotton Plant by Shoot Tip [J]. Current Biotechnology, 2022, 12(1): 83-89. |
| [8] | GAO Zhengyin, SUN Wenjie, SONG Xiaoyun, HU Shi, ZUO Kaijing*. Genome-wide Identification and Expression Pattern Analysis of Class Ⅲ Peroxidase Family in Gossypium raimondii [J]. Curr. Biotech., 2019, 9(5): 490-501. |
| [9] | WANG Peilin, ZHOU Lili, LIANG Chengzhen, MENG Zhigang, GUO Sandui*, ZHANG Rui*. Improvement of Cotton Mitochondrial Gene cRT-PCR and its Application in Searching for CMS Related Genes [J]. Curr. Biotech., 2019, 9(3): 303-308. |
| [10] | HU Wenran1, LI Xiaodong2, ZHOU Xiaoyun1, LI Xiaorong1, YANG Yang1, LI Bo1. Study on Expression and Functional Analysis of GhCAD6 Gene in Transgenic Cotton [J]. Curr. Biotech., 2019, 9(1): 46-53. |
| [11] | SONG Zhi-hong, MENG Qing-zhong, ZHANG Tao, ZHANG Sheng-xi, WANG Gui-chun, LI Guo-rong*. Application of ISSR Molecular Marker in Cotton Genetic Breeding [J]. Curr. Biotech., 2014, 4(6): 411-414. |
| [12] | YANG Shu-qiao, WANG Zhi-an, ZHANG An-hong, XU Qi, XIAO Juan-Li, LUO Xiao-li*. Cloning and Expression Analysis of a WRKY Gene GhWRKY25 in Upland Cotton [J]. Curr. Biotech., 2014, 4(4): 274-279. |
| [13] | SHI Ya-li, ZHANG Rui, MENG Zhi-gang, ZHOU Tao, SUN Guo-qing, MENG Zhao-hong, GUO San-dui*. Advanced Study on the Male Sterility of Cotton [J]. Curr. Biotech., 2013, 3(5): 328-335. |
| [14] | MA Wei-jun, REN Ai-min*, YIN Guo, ZHANG Yu-juan, HAN Qiu-cheng, CUI Ming-hui. Distinguishment of Seeds Impurity and SSR Loci Heterozygosis in The Three Line Hybrid Cotton Using Multiplex PCR-SSR Markers [J]. Curr. Biotech., 2013, 3(4): 248-251. |
| [15] | SUN Guo-qing1,2, ZHANG Rui1, WANG Yuan1, REN Mao-zhi1, MENG Zhi-gang1, ZHOU Tao1, CHEN Quan-jia2, QU Yan-ying2, GUO San-dui1*. Influence of Seed Purity on Insect Resistance and Yield in Transgenic Cotton [J]. Curr. Biotech., 2013, 3(1): 27-31. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||