| 1 | K-HOTT, ARANı́BAR N, SINGH B, et al.. Metabonomics classifies pathways affected by bioactive compounds. Artificial neural network classification of NMR spectra of plant extracts[J]. Phytochemistry, 2003, 62(6): 971-985. | 
																													
																							| 2 | NICHOLSON J K, LINDON J C, HOLMES E. 'Metabonomics': understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data[J]. Xenobiotica, 1999, 29(11): 1181-1189. | 
																													
																							| 3 | GATES S C, SWEELEY C C. Quantitative metabolic profiling based on gas chromatography[J]. Clin. Chem., 1978(10): 1663-1673. | 
																													
																							| 4 | FIEHN O, KOPKA J, DöRMANN P, et al.. Metabolite profiling for plant functional genomics[J]. Nat. Biotechnol., 2000, 18(11): 1157-1161. | 
																													
																							| 5 | NICHOLSON J K, TIMBRELL J A, SADLER P J. Proton NMR spectra of urine as indicators of renal damage. Mercury-induced nephrotoxicity in rats[J]. Mol. Pharmacol., 1985, 27(6):644-615. | 
																													
																							| 6 | 许国旺, 路鑫, 杨胜利. 代谢组学研究进展[J]. 中国医学科学院学报, 2007, 29(6): 701-711. | 
																													
																							| 7 | NICHOLSON J K, CONNELLY J, LINDON J C, et al.. Metabonomics: a platform for studying drug toxicity and gene function[J]. Nat. Rev. Drug Discov., 2002, 1(2):153-161. | 
																													
																							| 8 | SILVERSTEIN R M, WEBSTER F X, KIEMLE D J, et al.. Spectrometricidentification of organic compounds[M]. 8th edition Spectrometric Identification of Organic Compounds, 1980. | 
																													
																							| 9 | 罗陨飞, 李文华, 陈亚飞. 中低变质程度煤显微组分结构的~(13)C-NMR研究[J]. 燃料化学学报, 2005(5): 540-543. | 
																													
																							| 10 | 李娜, 盛明, 尤孟阳, 等. 应用~(13) C核磁共振技术研究土壤有机质化学结构进展[J]. 土壤学报, 2019, 56(4): 796-812. | 
																													
																							| 11 | GRIFFIN J L, WILLIAMS H J, SANG E, et al.. Metabolic profiling of genetic disorders: a multitissue (1) H nuclear magnetic resonance spectroscopic and pattern recognition study into dystrophic tissue[J]. Anal. Biochem., 2001, 293(1): 16-21. | 
																													
																							| 12 | 付金, 胡建安. 代谢组学在环境污染物的毒作用及其机制研究中的进展[J]. 中南大学学报(医学版), 2019, 44(6): 692-700. | 
																													
																							| 13 | WAGNER S, SCHOLZ K, SIEBER M, et al.. Tools in metabonomics: an integrated validation approach for LC-MS metabolic profiling of mercapturic acids in human urine[J]. Anal. Chem., 2007, 79(7): 2918-2926. | 
																													
																							| 14 | DETTMER K, ARONOV P A, HAMMOCK B D. Mass spectrometry-based metabolomics[J]. Mass Spectrom. Rev., 2007, 26(1): 51-78. | 
																													
																							| 15 | GUO R, WU H, YU X, et al.. Simultaneous determination of seven anthraquinone aglycones of crude and processed semen cassiae extracts in rat plasma by UPLC-MS/MS and its application to a comparative pharmacokinetic study[J/OL]. Molecules, 2017, 22(11):1803[2017-10-28]. . | 
																													
																							| 16 | WILSON I D, GIKA H, THEODORIDIS G, et al.. Global metabolic profiling procedures for urine using UPLC-MS[J]. Nat. Protoc., 2010, 5(6): 1005-1018. | 
																													
																							| 17 | HERNáNDEZ F, IBáñEZ M, BADE R, et al.. Investigation of pharmaceuticals and illicit drugs in waters by liquid chromatography-high-resolution mass spectrometry[J]. TrAC-Trend. Anal. Chem., 2014, 63: 140-157. | 
																													
																							| 18 | DELAPORTE G, CLADIèRE M, CAMEL V. Missing value imputation and data cleaning in untargeted food chemical safety assessment by LC-HRMS[J]. Chemometr. Intell. Lab., 2019, 188: 54-62. | 
																													
																							| 19 | LI H, WONGKONGKATHEP P, ORDEN S V, et al.. Revealing ligand binding sites and quantifying subunit variants of noncovalent protein complexes in a single native top-down FTICR MS experiment[J]. J. Am. Soc. Mass Spectr., 2014, 25(12): 2060-2068. | 
																													
																							| 20 | SIMONE N, BOGDAN B, ANDRÉ D, et al.. Developments in FTICR-MS and its potential for body fluid signatures[J]. Int. J. Mol. Sci., 2015, 16(11): 27133-27144. | 
																													
																							| 21 | 徐博, 吴翠, 李卓俊, 等. 1H-NMR技术在中药分析领域的应用现状[J]. 药物分析杂志, 2021, 41(10): 1663-1669. | 
																													
																							| 22 | 梁小蕊, 孙晓伟, 刘存海, 等. 一种海洋天然产物分子的红外光谱及核磁共振碳谱的理论研究[J]. 当代化工, 2018, 47(12): 2542-2544+2548. | 
																													
																							| 23 | ZHANG A, SUN H, WANG P, et al.. Modern analytical techniques in metabolomics analysis[J]. Analyst, 2012, 137(2): 293-300. | 
																													
																							| 24 | MIR S A, RAJAGOPALAN P, JAIN A P, et al.. LC-MS-based serum metabolomic analysis reveals dysregulation of phosphatidylcholines in esophageal squamous cell carcinoma[J]. J. Proteomics, 2015, 127(Pt A): 96-102. | 
																													
																							| 25 | WANG H Y, CHU X, ZHAO Z X, et al.. Analysis of low molecular weight compounds by MALDI-FTICR-MS[J]. J. Chromatogr.B Analyt. Technol. Biomed. Life Sci., 2011, 879(17-18): 1166-1179. | 
																													
																							| 26 | XIE J, YIN J, SUN S, et al.. Extraction and derivatization in single drop coupled to MALDI-FTICR-MS for selective determination of small molecule aldehydes in single puff smoke[J]. Anal. Chim. Acta, 2009, 638(2): 198-201. | 
																													
																							| 27 | 曾奇玉, 梁丽妮, 杨永凤, 等. 一株重金属高耐受菌的分离及鉴定[J]. 生物技术进展, 2015, 5(5): 387-391. | 
																													
																							| 28 | 张瑞兴, 刘舒, 皮子凤, 等. 汞离子对细胞代谢通路影响的代谢组学[J]. 高等学校化学学报, 2014, 35(6): 1146-1151. | 
																													
																							| 29 | TANG R, DING C, DANG F, et al.. NMR-based metabolic toxicity of low-level Hg exposure to earthworms[J]. Environ. Pollut., 2018, 239: 428-437. | 
																													
																							| 30 | 于德良. 镉和砷对不同发育阶段紫贻贝毒理效应的组学研究[D]. 烟台: 中国科学院烟台海岸带研究所, 2017. | 
																													
																							| 31 | 徐兰兰. 镉和砷对许氏平鲉幼鱼毒理效应蛋白质组学和代谢组学研究[D]. 烟台:中国科学院烟台海岸带研究所, 2020. | 
																													
																							| 32 | 杨永滨, 郑明辉, 刘征涛. 二恶英类毒理学研究新进展[J]. 生态毒理学报, 2006(2): 105-115. | 
																													
																							| 33 | 张保琴, 张海军, 杨常青, 等. 2,3,7,8-TCDD的短期暴露对HepG2肝癌细胞内小分子代谢产物的影响[J]. 生态毒理学报, 2012, 7(3): 292-298. | 
																													
																							| 34 | 陈蓉, 王以美, 汪江山, 等. 液质联用代谢组学研究多氯联苯和二噁英对大鼠毒性作用[J]. 环境化学, 2013, 32(7): 1226-1235. | 
																													
																							| 35 | 毕新慧, 徐晓白. 多氯联苯的环境行为[J]. 化学进展, 2000(2): 152-160. | 
																													
																							| 36 | 刘耀轩. 多氯联苯对赤子爱胜蚓的生长毒性作用及机制[D]. 杭州: 浙江大学, 2020. | 
																													
																							| 37 | LIAO G, SONG X, WANG X, et al.. Cytotoxicity of 2,2',3,5',6(PCB-Pentachlorobiphenyl95) and its metabolites in the chicken embryo liver cells of laying hens[J/OL]. Ecotoxicol. Environ. Saf., 2020, 194: 110338[2020-03-02] . | 
																													
																							| 38 | LI R, GUO C, TSE W, et al.. Metabolomic analysis reveals metabolic alterations of human peripheral blood lymphocytes by perfluorooctanoic acid[J/OL]. Chemosphere, 2019, 239(7): 124810[2019-09-07]. . | 
																													
																							| 39 | TIAN Y, GUI W, RIMAL B, et al.. Metabolic impact of persistent organic pollutants on gut microbiota[J]. Gut Microbes., 2020, 12(1): 1-16. | 
																													
																							| 40 | 陈敏玲, 韦献虎, 张菊梅, 等. 基于代谢组学的抗生素与细菌间作用研究进展[J]. 微生物学报, 2022, 62(2): 403-413. | 
																													
																							| 41 | ZHANG H, LIANG Y, WU P, et al.. Continuous dermal exposure to triclocarban perturbs the homeostasis of liver-gut axis in mice: insights from metabolic interactions and microbiome shifts[J]. Environ. Sci. Technol., 2021, 55(8): 5117-5127. | 
																													
																							| 42 | ANTUNES L C, HAN J, FERREIRA R B, et al.. Effect of antibiotic treatment on the intestinal metabolome[J]. Antimicrob. Agents. Ch., 2011, 55(4): 1494-503. | 
																													
																							| 43 | 倪江. 不同抗生素对肉鸡肠道免疫以及盲肠代谢影响的研究[D]. 泰安: 山东农业大学, 2013. | 
																													
																							| 44 | 韩红兴. 4-差向土霉素对大鼠的毒性及其肠道菌群与代谢组学影响的研究[D]. 杭州:浙江大学, 2016. | 
																													
																							| 45 | 尹金宝. 四环素胁迫下小鼠肠道微生物群落变化及代谢毒理效应研究[D]. 南京:南京大学, 2014. | 
																													
																							| 46 | NAIR P, KANDASAMY S, ZHANG J, et al.. Transcriptional and metabolomic analysis of Ascophyllum nodosum mediated freezing tolerance in Arabidopsis thaliana [J]. BMC Genom., 2012, 13(1): 1-23. | 
																													
																							| 47 | TEETS N M, PEYTON J T, RAGLAND G J, et al.. Combined transcriptomic and metabolomic approach uncovers molecular mechanisms of cold tolerance in a temperate flesh fly[J]. Physiol. Genom., 2012, 44(15): 764-77. | 
																													
																							| 48 | KEERTHISINGHE T P, YANG Q, CHOW A, et al.. Feeding state greatly modulates the effect of xenobiotics on gut microbiome metabolism: a case study of tetracycline[J/OL]. J. Hazard Mater., 2021, 413:125441[2021-02-16]. . |