| 1 | WANG B, SMITH S M, LI J. Genetic regulation of shoot architecture[J]. Annu. Rev. Plant Biol., 2018, 69: 437-468 | 
																													
																							| 2 | WANG W, GAO H, LIANG Y, et al.. Molecular basis underlying rice tiller angle: current progress and future perspectives[J]. Mol. Plant, 2022, 15(1): 125-137. | 
																													
																							| 3 | 王硕,葛秀秀.植物分枝性状研究进展[J]. 生物技术进展, 2017, 7(02): 98-101. | 
																													
																							| 4 | UGA Y, SUGIMOTO K, OGAWA S, et al.. Control of root system architecture by DEEPER ROOTING 1 increases rice yield under drought conditions[J]. Nat. Genet., 2013, 45(9): 1097-1102. | 
																													
																							| 5 | 汪文祥,胡琼,梅德圣,等.甘蓝型油菜分枝角度主基因+多基因混合遗传模型及遗传效应[J]. 作物学报, 2016, 42(08): 1103-1111. | 
																													
																							| 6 | 王汉中,殷艳.我国油料产业形势分析与发展对策建议[J]. 中国油料作物学报, 2014, 36(03): 414. | 
																													
																							| 7 | YOSHIHARA T, SPALDING E P. Switching the direction of stem gravitropism by altering two amino acids in AtLAZY1[J]. Plant Physiol., 2020, 182(2): 1039-1051. | 
																													
																							| 8 | WAITE J M, DARDICK C. The roles of the IGT gene family in plant architecture: past, present, and future[J/OL]. Curr. Opin. Plant Biol., 2021, 59: 101983[2021-01-07] . | 
																													
																							| 9 | LI P, WANG Y, QIAN Q, et al..  LAZY1 controls rice shoot gravitropism through regulating polar auxin transport[J]. Cell Res., 2007, 17(5): 402-410. | 
																													
																							| 10 | YOSHIHARA T, IINO M. Identification of the gravitropism-related rice gene LAZY1 and elucidation of LAZY1-dependent and-independent gravity signaling pathways[J]. Plant and Cell Physiol., 2007, 48(5): 678-688. | 
																													
																							| 11 | YU B, LIN Z, LI H, et al..  TAC1, a major quantitative trait locus controlling tiller angle in rice[J]. Plant J., 2007, 52(5): 891-898. | 
																													
																							| 12 | CHEN Y, FAN X, SONG W, et al.. Over‐expression of OsPIN2 leads to increased tiller numbers, angle and shorter plant height through suppression of OsLAZY1 [J]. Plant Biotechnol. J., 2012, 10(2): 139-149. | 
																													
																							| 13 | JIANG J, TAN L, ZHU Z, et al.. Molecular evolution of the TAC1 gene from rice (Oryza sativa L.)[J]. J.Genet. Genomics, 2012, 39(10): 551-560. | 
																													
																							| 14 | 何芹.水稻穗形基因OsAFB6和分蘖角度基因LAZY1的功能研究[D]. 武汉: 华中农业大学, 2018. | 
																													
																							| 15 | ZHANG N, YU H, YU H, et al.. A core regulatory pathway controlling rice tiller angle mediated by the LAZY1-dependent asymmetric distribution of auxin[J]. Plant Cell, 2018, 30(7): 1461-1475. | 
																													
																							| 16 | LI Z, LIANG Y, YUAN Y, et al..  OsBRXL4 regulates shoot gravitropism and rice tiller angle through affecting LAZY1 nuclear localization[J]. Mol. Plant, 2019, 12(8): 1143-1156. | 
																													
																							| 17 | HUANG L, WANG W, ZHANG N, et al..  LAZY2 controls rice tiller angle through regulating starch biosynthesis in gravity‐sensing cells[J]. New Phytol., 2021, 231(3): 1073-1087. | 
																													
																							| 18 | GAO J, LIANG H, HUANG J, et al.. Development of the PARMS marker of the TAC1 gene and its utilization in rice plant architecture breeding[J]. Euphytica, 2021, 217(3): 1-11. | 
																													
																							| 19 | DONG Z, JIANG C, CHEN X, et al.. Maize LAZY1 mediates shoot gravitropism and inflorescence development through regulating auxin transport, auxin signaling, and light response[J]. Plant Physiol., 2013, 163(3): 1306-1322. | 
																													
																							| 20 | KU L, WEI X, ZHANG S, et al.. Cloning and characterization of a putative TAC1 ortholog associated with leaf angle in maize(Zea mays L.)[J/OL]. PLoS ONE, 2011, 6(6): e20621[2011-06-07] . | 
																													
																							| 21 | YOSHIHARA T, SPALDING E P, IINO M.  AtLAZY1 is a signaling component required for gravitropism of the Arabidopsis thaliana inflorescence[J]. Plant J., 2013, 74(2): 267-279. | 
																													
																							| 22 | SASAKI S, YAMAMOTO K T.  Arabidopsis LAZY1 is a peripheral membrane protein of which the carboxy-terminal fragment potentially interacts with microtubules[J]. Plant Biotechnol., 2015, 32(1): 103-108. | 
																													
																							| 23 | TANIGUCHI M, FURUTANI M, NISHIMURA T, et al.. The Arabidopsis LAZY1 family plays a key role in gravity signaling within statocytes and in branch angle control of roots and shoots[J]. Plant Cell, 2017, 29(8): 1984-1999. | 
																													
																							| 24 | GUSEMAN J M, WEBB K, SRINIVASAN C, et al..  DRO1 influences root system architecture in Arabidopsis and Prunus species[J]. Plant J., 2017, 89(6): 1093-1105. | 
																													
																							| 25 | WAITE J M, DARDICK C.  TILLER ANGLE CONTROL 1 modulates plant architecture in response to photosynthetic signals[J]. J. Exp. Bot., 2018, 69(20): 4935-4944. | 
																													
																							| 26 | GE L, CHEN R. Negative gravitropic response of roots directs auxin flow to control root gravitropism[J]. Plant Cell Environ., 2019, 42(8): 2372-2383. | 
																													
																							| 27 | HOLLENDER C A, HILL J L, WAITE J, et al.. Opposing influences of TAC1 and LAZY1 on lateral shoot orientation in Arabidopsis [J]. Sci. Rep., 2020, 10(1): 1-13. | 
																													
																							| 28 | FURUTANI M, HIRANO Y, NISHIMURA T, et al.. Polar recruitment of RLD by LAZY1-like protein during gravity signaling in root branch angle control[J]. Nat. Commun., 2020, 11(1): 1-13. | 
																													
																							| 29 | YANG P, WEN Q, YU R, et al.. Light modulates the gravitropic responses through organ-specific PIFs and HY5 regulation of LAZY4 expression in Arabidopsis [J]. Proc. Natl. Acad. Sci. USA, 2020, 117(31): 18840-18848. | 
																													
																							| 30 | WAITE J M, COLLUM T D, DARDICK C.  AtDRO1 is nuclear localized in root tips under native conditions and impacts auxin localization[J]. Plant Mol. Biol., 2020, 103(1): 197-210. | 
																													
																							| 31 | SUN C, ZHANG C, WANG X, et al.. Genome-wide identification and characterization of the IGT gene family in allotetraploid rapeseed(Brassica napus L.)[J]. DNA Cell Biol., 2021, 40(3): 441-456. | 
																													
																							| 32 | 朱燕. 甘蓝型油菜LAZY1基因的功能验证[D]. 重庆: 西南大学, 2020. | 
																													
																							| 33 | 张晓琼,王晓雯,田维江,等. LAZY1通过油菜素内酯途径调控水稻叶夹角的发育[J]. 作物学报, 2017, 43(12):1767-1773. | 
																													
																							| 34 | LIU J, WANG W, MEI D, et al.. Characterizing variation of branch angle and genome-wide association mapping in rapeseed(Brassica napus L.)[J/0L]. Front. Plant Sci., 2016, 7: 21[2026-02-04] . | 
																													
																							| 35 | GE L, CHEN R. Negative gravitropism in plant roots[J]. Nat. Plants, 2016, 2(11): 1-4. | 
																													
																							| 36 | 周琴,谢钰容.光信号转导因子HY5调控拟南芥分枝的功能研究[J]. 生物技术进展, 2022, 12(3): 379-386. | 
																													
																							| 37 | STROHM A K, BALDWIN K L, MASSON P H. Multiple roles for membrane-associated protein trafficking and signaling in gravitropism[J/OL]. Front. Plant Sci., 2012, 3: 274[2012-12-11] . | 
																													
																							| 38 | VANDENBRINK J P, KISS J Z, HERRANZ R, et al.. Light and gravity signals synergize in modulating plant development[J/OL]. Front. Plant Sci., 2014, 5: 563[2014-10-28] .[2020-01-08] . | 
																													
																							| 39 | MARONE D, RODRIGUEZ M, SAIA S, et al.. Genome-wide association mapping of prostrate/erect growth habit in winter durum wheat[J/OL]. Int. J. Mol. Sci., 2020, 21(2): 394[2020-01-08]. . | 
																													
																							| 40 | KIM J Y, RYU J Y, BAEK K, et al.. High temperature attenuates the gravitropism of inflorescence stems by inducing SHOOT GRAVITROPISM 5 alternative splicing in Arabidopsis [J]. New Phytol., 2016, 209(1): 265-279. | 
																													
																							| 41 | 刘蒙蒙,谭彬,郑先波,等.几个影响植物分枝角度的关键基因及其调控机制[J]. 分子植物育种, 2017, 15(7): 2815-2822. | 
																													
																							| 42 | KAWAMOTO N, KANBE Y, NAKAMURA M, et al.. Gravity-sensing tissues for gravitropism are required for "anti-gravitropic" phenotypes of Lzy multiple mutants in Arabidopsis [J]. Plants, 2020, 9(5): 615. | 
																													
																							| 43 | SUN Q, LIT Y, LI D D, et al.. Overexpression of loose plant architecture 1 increases planting density and resistance to sheath blight disease via activation of PIN‐FORMED 1a in rice[J/OL]. Plant Biotechnol. J., 2019, 17(5): 855 [2019-02-19] . | 
																													
																							| 44 | RAKUSOVÁ H, ABBAS M, HAN H, et al.. Termination of shoot gravitropic responses by auxin feedback on PIN3 polarity[J]. Curr Biol., 2016, 26(22): 3026-3032. | 
																													
																							| 45 | YOSHIHARA T, SPALDING E P.  LAZY genes mediate the effects of gravity on auxin gradients and plant architectured[J]. Plant Physiol., 2017, 175(2): 959-969. | 
																													
																							| 46 | SANG D, CHEN D, LIU G, et al.. Strigolactones regulate rice tiller angle by attenuating shoot gravitropism through inhibiting auxin biosynthesis[J]. Proc. Natl. Acad. Sci. USA, 2014, 111(30): 11199-11204. | 
																													
																							| 47 | RAMIREZ‐PRADO J S, LATRASSE D, RODRIGUEZ‐GRANADOS N Y, et al.. The Polycomb protein LHP 1 regulates Arabidopsis thaliana stress responses through the repression of the MYC 2‐dependent branch of immunity[J]. Plant J., 2019, 100(6): 1118-1131. | 
																													
																							| 48 | LI H, ZHANG L, HU J, et al.. Genome-wide association mapping reveals the genetic control underlying branch angle in rapeseed(Brassica napus L.)[J/OL]. Front. Plant Sci., 2017, 8: 1054[2017-06-19] . | 
																													
																							| 49 | 汪文祥,储文,梅德圣,等.基于SNP遗传图谱定位甘蓝型油菜分枝角度 QTL[J]. 作物学报, 2019, 45(1): 37-45. | 
																													
																							| 50 | SHARMA M, SHARMA M, JAMSHEER K M, et al.. Jasmonic acid coordinates with light, glucose and auxin signalling in regulating branching angle of Arabidopsis lateral roots[J]. Plant Cell Environ.t, 2022, 45(5): 1554-1572. | 
																													
																							| 51 | SALEHIN M, BAGCHI R, ESTELLE M. SCFTIR1/AFB-based auxin perception: mechanism and role in plant growth and development[J]. Plant Cell, 2015, 27(1): 9-19. | 
																													
																							| 52 | KITOMI Y, HANZAWA E, KUYA NZ, et al.. Root angle modifications by the DRO1 homolog improverice yields in saline paddy fields[J]. Proc. Natl. Acad. Sci. USA, 2020, 117(35): 21242-21250. |