Current Biotechnology ›› 2021, Vol. 11 ›› Issue (6): 724-731.DOI: 10.19586/j.2095-2341.2021.0130
• Reviews • Previous Articles Next Articles
					
													Nana ZHOU1,2,3( ), Xiaoyan WANG1,2,3, Yuan ZHANG1,2,3, Jing WANG1,2,3, Guomiao ZHAO1,2,3, Chao WEI1,2,3, Kai YANG1,2,3, Tai AN1,2,3(
), Xiaoyan WANG1,2,3, Yuan ZHANG1,2,3, Jing WANG1,2,3, Guomiao ZHAO1,2,3, Chao WEI1,2,3, Kai YANG1,2,3, Tai AN1,2,3( )
)
												  
						
						
						
					
				
Received:2021-07-06
															
							
															
							
																	Accepted:2021-10-08
															
							
																	Online:2021-11-25
															
							
																	Published:2021-11-26
															
						Contact:
								Tai AN   
													
        
               		周娜娜1,2,3( ), 王小艳1,2,3, 张媛1,2,3, 王靖1,2,3, 赵国淼1,2,3, 魏超1,2,3, 杨凯1,2,3, 安泰1,2,3(
), 王小艳1,2,3, 张媛1,2,3, 王靖1,2,3, 赵国淼1,2,3, 魏超1,2,3, 杨凯1,2,3, 安泰1,2,3( )
)
                  
        
        
        
        
    
通讯作者:
					安泰
							作者简介:周娜娜 E-mail:zhounana@cofco.com;
				
							基金资助:CLC Number:
Nana ZHOU, Xiaoyan WANG, Yuan ZHANG, Jing WANG, Guomiao ZHAO, Chao WEI, Kai YANG, Tai AN. Progress on the Production Technology of Recombinant Therapeutic Proteins[J]. Current Biotechnology, 2021, 11(6): 724-731.
周娜娜, 王小艳, 张媛, 王靖, 赵国淼, 魏超, 杨凯, 安泰. 重组蛋白药物的生产技术进展[J]. 生物技术进展, 2021, 11(6): 724-731.
| 表达系统 | 优点 | 缺点 | 
|---|---|---|
| 大肠杆菌 | 表达系统相对简单、易于操作、营养需求简单、易于遗传和发酵操作、周期短[ | 缺乏翻译后修饰机制,内毒素的存在可能会对给患者的药物产生免疫反应[ | 
| 酵母系统 | 酿酒酵母系统:可以在无蛋白培养基中快速生长,存在翻译后修饰机制和细胞外分泌产物的能力[ | 酿酒酵母:重组蛋白过表达可能导致在细胞内积累和产量下降[ | 
| 毕赤酵母系统:多种具有翻译后修饰功能的高表达菌株且可高密度生长[ | 毕赤酵母:在存在碳源如葡萄糖、甘油或乙醇时,启动子AOX1被强烈抑制[ | |
| CHO细胞系 | 可以产生与人同源性最高的重组蛋白,保证正确的折叠与糖基化 | 需要营养更丰富的培养基,生长条件严苛,生长周期较长[ | 
Table 1 The different expression systems for recombinant therapeutic proteins
| 表达系统 | 优点 | 缺点 | 
|---|---|---|
| 大肠杆菌 | 表达系统相对简单、易于操作、营养需求简单、易于遗传和发酵操作、周期短[ | 缺乏翻译后修饰机制,内毒素的存在可能会对给患者的药物产生免疫反应[ | 
| 酵母系统 | 酿酒酵母系统:可以在无蛋白培养基中快速生长,存在翻译后修饰机制和细胞外分泌产物的能力[ | 酿酒酵母:重组蛋白过表达可能导致在细胞内积累和产量下降[ | 
| 毕赤酵母系统:多种具有翻译后修饰功能的高表达菌株且可高密度生长[ | 毕赤酵母:在存在碳源如葡萄糖、甘油或乙醇时,启动子AOX1被强烈抑制[ | |
| CHO细胞系 | 可以产生与人同源性最高的重组蛋白,保证正确的折叠与糖基化 | 需要营养更丰富的培养基,生长条件严苛,生长周期较长[ | 
| 宿主 | 重组蛋白药物 | 产量 | 参考文献 | 
|---|---|---|---|
| 毕赤酵母(P. pastoris) | 乙型肝炎表面B抗原 | 7 g·L-1 | [ | 
| 人粒细胞⁃巨噬细胞集落刺激因子 | 285 mg·L-1 | [ | |
| 人血清蛋白 | 92.29 mg·L-1 | [ | |
| 酿酒酵母(S. cerevisiae) | 胰高血糖素样肽2 | — | [ | 
| 人表皮生长因子 | 5 mg·L-1 | [ | |
| 解脂耶氏酵母(Yarrowia lipolytica) | 人干扰素α2a(IFNα2a) | 425 mg·L-1 | [ | 
| 乳酸克鲁维酵母(Kluyveromyces lactis) | 人干扰素β | — | [ | 
| 汉森酵母(Hansenula polymorpha) | HPV 16型L1‑L2嵌合蛋白(SAF) | 132.10 mg·L-1 | [ | 
Table 2 The recombinant therapeutic proteins expressed by yeast systems
| 宿主 | 重组蛋白药物 | 产量 | 参考文献 | 
|---|---|---|---|
| 毕赤酵母(P. pastoris) | 乙型肝炎表面B抗原 | 7 g·L-1 | [ | 
| 人粒细胞⁃巨噬细胞集落刺激因子 | 285 mg·L-1 | [ | |
| 人血清蛋白 | 92.29 mg·L-1 | [ | |
| 酿酒酵母(S. cerevisiae) | 胰高血糖素样肽2 | — | [ | 
| 人表皮生长因子 | 5 mg·L-1 | [ | |
| 解脂耶氏酵母(Yarrowia lipolytica) | 人干扰素α2a(IFNα2a) | 425 mg·L-1 | [ | 
| 乳酸克鲁维酵母(Kluyveromyces lactis) | 人干扰素β | — | [ | 
| 汉森酵母(Hansenula polymorpha) | HPV 16型L1‑L2嵌合蛋白(SAF) | 132.10 mg·L-1 | [ | 
| 纯化方式 | 机理 | |
|---|---|---|
| 超滤 | 目标蛋白和其他杂质基于尺寸大小而被分离 | |
| 单柱色谱 | 反相液相色谱(RP‑LC) | 根据分析物的疏水特性进行分离[ | 
| 离子交换色谱(IEX) | 基于分析物的电荷与固定相之间的静电相互作用分离;可鉴定通过 RP‑LC 难以检测的肽修饰,如脱酰胺或乙酰化,能够区分具有相似疏水性的分析物[ | |
| 亲水相互作用色谱(HILIC) | 正相色谱的一种变体,洗脱顺序与反相色谱相反[ | |
| 混合模式 | 在同一固定相上结合两种配体,具备两种分离机制[ | |
| 多维色谱 | 连续应用两种或两种以上的混合模式色谱的组合 | |
| MCSGP技术 | 与单柱色谱分离原理相同,使用两个或更多相同的色谱柱,不纯组分可在内部循环进入系统,性能参数增加[ | |
Table 3 The purification methods of recombinant therapeutic proteins
| 纯化方式 | 机理 | |
|---|---|---|
| 超滤 | 目标蛋白和其他杂质基于尺寸大小而被分离 | |
| 单柱色谱 | 反相液相色谱(RP‑LC) | 根据分析物的疏水特性进行分离[ | 
| 离子交换色谱(IEX) | 基于分析物的电荷与固定相之间的静电相互作用分离;可鉴定通过 RP‑LC 难以检测的肽修饰,如脱酰胺或乙酰化,能够区分具有相似疏水性的分析物[ | |
| 亲水相互作用色谱(HILIC) | 正相色谱的一种变体,洗脱顺序与反相色谱相反[ | |
| 混合模式 | 在同一固定相上结合两种配体,具备两种分离机制[ | |
| 多维色谱 | 连续应用两种或两种以上的混合模式色谱的组合 | |
| MCSGP技术 | 与单柱色谱分离原理相同,使用两个或更多相同的色谱柱,不纯组分可在内部循环进入系统,性能参数增加[ | |
| 1 | TAO L, RAO C M. Analysis and evaluation of product-related proteins in recombinant protein therapeutics[J]. Chin. J. Pharm. Anal., 2018, 38(11) :1851-1864. | 
| 2 | DINGMAN R, BALU-IYER S V. Immunogenicity of protein pharmaceuticals[J]. J. Pharm. Sci., 2019, 108(5):1637-1654. | 
| 3 | MUTTENTHALER M, KING G F, ADAMS D J, et al.. Trends in peptide drug discovery[J]. Nat. Rev. Drug Discov., 2021, 20(4):309-325. | 
| 4 | 长城产业洞见. 重组蛋白药物——可以治病的蛋白质[EB/OL]. [2021-07-24]. . | 
| 5 | SHAHCHERAGHI S H, AYATOLLAHI J, ALJABALI A A, et al.. An overview of vaccine development for COVID-19[J]. Therap. Deliv., 2021, 12(3):235-244. | 
| 6 | GUPTA S K, PRATYOOSH S. Sophisticated cloning, fermentation, and purification technologies for an enhanced therapeutic protein production: a review[J/OL]. Front. Pharmacol., 2017, 8:419[2021-08-20]. . | 
| 7 | HAYAT S M G, FARAHANI N, GOLICHENARI B, et al.. Recombinant protein expression in Escherichia coli (E. coli): what we need to know[J]. Curr. Pharm. Des., 2018, 24(6):718-725. | 
| 8 | LOBSTEIN J, EMRICH C A, JEANS C, et al.. Erratum to: shuffle, a novel Escherichia coli protein expression strain capable of correctly folding disulfide bonded proteins in its cytoplasm[J/OL]. Microb. Cell Fact., 2016, 15(1):124[2021-08-21]. . | 
| 9 | ROBINSON M P, KE N, LOBSTEIN J, et al.. Efficient expression of full-length antibodies in the cytoplasm of engineered bacteria[J/OL]. Nat. Commun., 2015, 6:8072[2021-08-21]. . | 
| 10 | KAUR J, KUMAR A, KAUR J. Strategies for optimization of heterologous protein expression in E. coli: roadblocks and reinforcements[J]. Int. J. Biol. MacromoL., 2018, 106:803-822. | 
| 11 | DE LUCA C, LIEVORE G, BOZZA D, et al.. Downstream processing of therapeutic peptides by means of preparative liquid chromatographys[J/OL]. Molecules, 2021, 26(15):4688[2021-08-20]. . | 
| 12 | LOOSER V, BRUHLMANN B, BUMBAK F, et al.. Cultivation strategies to enhance productivity of Pichia pastoris: a review[J]. Biotechnol. Adv., 2015, 33:1177-1193. | 
| 13 | ROOHVAND F, EHSANI P, ABDOLLAHPOUR-ALITAPPEH M, et al.. Biomedical applications of yeasts —— a patent view, part two: era of humanized yeasts and expanded applications[J]. Expert. Opin. Ther. Pat., 2020, 30(8):609-631. | 
| 14 | THAK E J, YOO S J, MOON H Y, et al.. Yeast synthetic biology for designed cell factories producing secretory recombinant proteins[J/OL]. FEMS Yeast Res., 2020, 20(2):foaa009[2021-08-21]. . | 
| 15 | DE WACHTER C, LVAN LANDUYT, CALLEWAERT N. Engineering of yeast glycoprotein expression[J]. Adv. Biochem. Eng. Biotechnol., 2021, 175:93-135. | 
| 16 | BAGHBAN R, FARAJNIA S, RAJABIBAZL M, et al.. Yeast expression systems: overview and recent advances[J]. Mol. Biotechnol., 2019, 61(5):365-384. | 
| 17 | KARBALAEI M, REZAEE S A, FARSIANI H. Pichia pastoris: A highly successful expression system for optimal synthesis of heterologous proteins[J]. J. Cell Physiol., 2020, 235(9):5867-5881. | 
| 18 | AHMAND M, HIRZ M, PICHLER H, et al.. Protein expression in Pichia pastoris: recent achievements and perspectives for heterologous protein production[J]. Appl. Microbiol. Biotechnol., 2014, 98:5301-5317. | 
| 19 | KIELKOPF C L, BAUER W, URBATSCH I L. Expression of cloned genes in Pichia pastoris using the methanol-inducible promoter AOX1[J/OL]. Cold Spring Harb. Protoc., 2021(1)[2021-08-21]. . | 
| 20 | LI Z, MIAO Y, YANG J, et al.. Efficient improvement of surface displayed lipase from Rhizomucor miehei in Pichia PinkTM protease-deficient system[J/OL]. Protein Expr. Purif., 2021, 180:105804 [2021-08-21]. . | 
| 21 | MADHAVAN A, ARUN K B, RAVEENDRAN S, et al.. Customized yeast cell factories for biopharmaceuticals: From cell engineering to process scale up[J/OL]. Microb. Cell Fact., 2021, 20(1): 124[2021-08-21]. . | 
| 22 | WANG T Y, GUO X. Expression vector cassette engineering for recombinant therapeutic production in mammalian cell systems[J]. Appl. Microbiol. Biotechnol., 2020, 104(13):5673-5688. | 
| 23 | KHAN A H, TY E G J, NOORDIN R. CRISPR-Cas9 genome editing tool for the production of industrial biopharmaceuticals[J]. Mol. Biotechnol., 2020, 62(9):401-411. | 
| 24 | SCHMIEDER V, BYDLINSKI N, STRASSER R, et al.. Enhanced genome editing tools for multi-gene deletion knock-out approaches using paired CRISPR sgRNAs in CHO Cells[J/OL]. Biotechnol. J., 2012, 13(3), e1700211[2021-08-22]. . | 
| 25 | SY A, YAN L, PLD B, et al.. Safety and immunogenicity of a recombinant tandem-repeat dimeric RBD-based protein subunit vaccine (ZF2001) against COVID-19 in adults: two randomised, double-blind, placebo-controlled, phase 1 and 2 trials[J]. Sci. Direct., 2021, 21(8): 1107-1119. | 
| 26 | KALLUNKI T, BARISIC M, JÄÄTTELÄ M, et al.. How to choose the right inducible gene expression Ssystem for mammalian studies?[J/OL]. Cells, 2019, 8(8):796[2021-08-21]. . | 
| 27 | SAMBROOK J, FRITSCH E F, and MANIATIS T. Molecular Cloning[M]. 2nd Edn. New York, NY: Cold Spring Harbor Laboratory Press, 1989. | 
| 28 | MAMAT U, WILKE K, BRAMHILL D, et al.. Detoxifying Escherichia coli for endotoxin-free production of recombinant proteins[J/OL]. Microb. Cell Fact., 2015, 14(1):57[2021-08-21]. . | 
| 29 | XIE Y, HAN X, MIAO Y. An effective recombinant protein expression and purification system in Saccharomyces cerevisiae[J/OL]. Curr. Protoc. Mol. Biol., 2018, 123(1):e62[2021-08-23]. . | 
| 30 | TOMÀS-GAMISANS M, ANDRADE C C P, MARESCA F, et al.. Redox engineering by ectopic overexpression of NADH kinase in recombinant Pichia pastoris (Komagataella phaffii): impact on cell physiology and recombinant production of secreted proteins[J/OL]. Appl. Environ. Microbiol., 2020, 86(6):e02038-19[2021-08-23]. . | 
| 31 | XU S, ZHANG G Y, ZHANG H, et al.. Effects of Rho1, a small GTPase on the production of recombinant glycoproteins in Saccharomyces cerevisiae[J/OL]. Microb. Cell Fact., 2016, 15(1):179[2021-08-21]. . | 
| 32 | HOPSON S E, THOMPSON M J. Heterologous expression of the human polybromo-1 protein in the methylotrophic yeast Pichia pastoris[J]. Protein Expr. Purif., 2018, 152:23-30. | 
| 33 | TURKANOGLU Ö A, YILMAZ S, INAN M. Pichia pastoris promoters[J]. Methods Mol. Biol., 2019, 1923:97-112. | 
| 34 | FAN Y, LEY D, ANDERSEN M R. Fed-batch CHO cell culture for lab-scale antibody production[J]. Methods Mol. Biol., 2018, 1674:147-161. | 
| 35 | GURRAMKONDA C, ADNAN A, GABEL T, et al.. Simple high-cell density fed-batch technique for high-level recombinant protein production with Pichia pastoris: application to intracellular production of hepatitis B surface antigen[J/OL]. Microb. Cell Fact., 2009, 8:13[2021-08-21]. . | 
| 36 | TRAN A M, NGUYEN T T, NGUYEN C T, et al.. Pichia pastoris versus Saccharomyces cerevisiae: a case study on the recombinant production of human granulocyte-macrophage colony-stimulating factor[J/OL]. BMC Res. Notes, 2017,10:148[2021-08-22]. . | 
| 37 | ZHU W, GONG G, PAN J, et al.. High level expression and purifcation of recombinant human serum albumin in Pichia pastoris[J]. Protein Exp. Purif., 2018, 147:61-68. | 
| 38 | ZHANG Z, WU X, CAO L, et al.. Generation of glucagon-like peptide-2-expressing Saccharomyces cerevisiae and its improvement of the intestinal health of weaned rats[J]. Microb. Biotechnol., 2016, 9:846-857. | 
| 39 | CHIGIRA Y, OKA T, OKAJIMA T, et al.. Engineering of a mammalian O-glycosylation pathway in the yeast Saccharomyces cerevisiae: production of O-fucosylated epidermal growth factor domains[J]. Glycobiology, 2008, 18:303-314. | 
| 40 | KATLA S, MOHAN N, PAVAN S S, et al.. Control of specifc growth rate for the enhanced production of human interferon α2b in glycoengineered Pichia pastoris—process analytical technology guided approach[J]. J. Chem. Technol. Biotechnol., 2019, 94:3111-3123. | 
| 41 | MADHAVAN A, SUKUMARAN R K. Secreted expression of an active human interferon-beta (HuIFNβ) in Kluyveromyces lactis[J]. Eng. Life Sci., 2016, 16:379-385. | 
| 42 | BREDELL H, SMITH J J, GORGENS J F, et al.. Expression of unique chimeric human papilloma virus type 16 (HPV-16) L1-L2 proteins in Pichia pastoris and Hansenula polymorpha [J]. Yeast, 2018, 35:519-529. | 
| 43 | GUPTA S K, SHUKLA P. Gene editing for cell engineering: trends and applications[J]. Crit. Rev. Biotechnol., 2016, 37(5):1-13. | 
| 44 | MADHAVAN A, ARUN K B, SINDHU R, et al.. Tailoring of microbes for the production of high value plant-derived compounds: from pathway engineering to fermentative production[J/OL]. Biochim. Biophys. Acta. Proteins Proteom., 2019, 1867:140262 [2021-08-21]. . | 
| 45 | RAHIMI A, HOSSEINI S N, JAVIDANBARDAN A, et al.. Continuous fermentation of recombinant Pichia pastoris Mut+ producing HBsAg: optimizing dilution rate and determining strain-specifc parameters[J]. Food Bioprod. Proc., 2019, 118:248-257. | 
| 46 | LANGER E S, RADER R A. Single‐use technologies in biopharmaceutical manufacturing: A 10‐year review of trends and the future[J]. Engin. Life, 2014, 14(3):238-243. | 
| 47 | TURNER R, JOSEPH A, TITCHENER-HOOKER N, et al.. Manufacturing of proteins and antibodies: chapter downstream processing technologies[J]. Adv. Biochem. Eng. Biotechnol., 2018, 165:95-114. | 
| 48 | DORIVAL-GARCÍA N, CARILLO S, TA C, et al.. Large-scale assessment of extractables and leachables in single-use bags for biomanufacturing[J]. Anal. Chem., 2018, 90(15):9006-9015. | 
| 49 | ÖTES O, FLATO H, VAZQUEZ RAMIREZ D, et al.. Scale-up of continuous multicolumn chromatography for the protein a capture step: from bench to clinical manufacturing[J]. J. Biotechnol., 2018, 281:168-174. | 
| 50 | MAURER M M, SCHILLINGER H. Primary recovery of yeast culture supernatant for recombinant protein purification[J]. Methods Mol. Biol., 2019, 1923:335-342. | 
| 51 | GERVAIS D. Quality control and downstream processing of therapeutic enzymes[J]. Adv. Exp. Med. Biol., 2019, 1148:55-80. | 
| 52 | DHANASEKHARAN K, KESTER B, BARD K H, et al.. Emerging technology trends in biologies development: a contract development and manufacturing perspective[J]. BioProc. Intern., 2016, 14(9): 32,34,36-37. | 
| 53 | TAIPA M Â, FERNANDES P, DE CARVALHO C C C R. Production and purification of therapeutic enzymes[J]. Adv. Exp. Med. Biol., 2019, 1148:1-24. | 
| 54 | SINGH A, UPADHYAY V, UPADHYAY A K, et al.. Protein recovery from inclusion bodies of Escherichia coli using mild solubilization process[J/OL]. Microb. Cell Fact., 2015, 14(1):41[2021-08-23]. . | 
| 55 | ZHANG K, LIU X. Mixed-mode chromatography in pharmaceutical and biopharmaceutical applications[J]. J. Pharm. Biomed. Anal., 2016, 128:73-88. | 
| 56 | KHALAF R, FORRER N, BUFFOLINO G, et al.. Model-based description of peptide retention on doped reversed phase media[J]. J. Chromatogr. A, 2015, 1407:169-175. | 
| 57 | MAKEY D M, SHCHURIK V, WANG H, et al.. Mapping the separation landscape in two-dimensional liquid chromatography: blueprints for efficient analysis and purification of pharmaceuticals enabled by computer-assisted modeling[J]. Anal. Chem., 2021, 93: 964-972. | 
| 58 | KÖRMÖCZI T, SZABÓ Í, FARKAS E, et al.. Heart-cutting two-dimensional liquid chromatography coupled to quadrupole-orbitrap high resolution mass spectrometry for determination of N,N-dimethyltryptamine in rat plasma and brain; method development and application[J/OL]. J. Pharm. Biomed. Anal., 2020, 191:113615[2021-08-21]. . | 
| 59 | STOLL D R, CARR P W. Two-dimensional liquid chromatography: a state of the art tutorial[J]. Anal. Chem., 2017, 89: 519-531. | 
| 60 | LUCA C, FELLETTI S, LIEVORE G, et al.. From batch to continuous chromatographic purification of a therapeutic peptide through multicolumn countercurrent solvent gradient purification[J/OL]. J. Chromatogr. A, 2020, 1625:461304[2021-08-21]. . | 
| 61 | SHAIK M I, SARBON N M. A review on purification and characterization of anti-proliferative peptides derived from fish protein hydrolysate[J/OL]. Food Rev. Int., 2020[2021-08-21]. . | 
| 62 | POOLE C F, ATAPATTU S N. Determination of physicochemical properties of small molecules by reversed-phase liquid chromatography[J/OL]. J. Chromatogr. A, 2020, 1626:461427[2021-08-21]. . | 
| 63 | AHMED S, ATIA N N, RAGEH A H. Selectivity enhanced cation exchange chromatography for simultaneous determination of peptide variants[J]. Talanta, 2019, 199: 347-354. | 
| 64 | MANT C T, BYARS A, ANKARLO S, et al.. Separation of highly charged (+5 to +10) amphipathic α-helical peptide standards by cation-exchange and reversed-phase high-performance liquid chromatography[J]. J. Chromatogr. A, 2018, 1574: 60-70. | 
| 65 | PICCINNI M Z, GUILLE M J. Purifying antibodies raised against xenopus peptides[J/OL]. Cold Spring Harb. Protoc., 2020(9):105619[2021-08-21]. . | 
| 66 | STEINEBACH F, ULMER N, DECKER L, et al.. Experimental design of a twin-column countercurrent gradient purification process[J]. J. Chromatogr. A, 2017, 1492: 19-26. | 
| 67 | VOGG S, ULMER N, SOUQUET J, et al.. Experimental evaluation of the impact of intrinsic process parameters on the performance of a continuous chromatographic polishing unit (MCSGP)[J/OL]. Biotechnol. J., 2019, 14(7): e1800732[2021-08-21]. . | 
| 68 | DE LUCA C, FELLETTI S, BOZZA D, et al.. Process intensification for the purification of peptidomimetics: the case of icatibant through multicolumn countercurrent solvent gradient purification (MCSGP)[J]. Ind. Eng. Chem. Res., 2021, 60: 6826-6834. | 
| 69 | RAO C M. Establishment and application of the quality control technology system for recombinant drugs in China:a review[J]. Chin. Pharm. J., 2016, 51(13): 1057-1066. | 
| 70 | ROGSTAD S, YAN H, WANG X, et al.. Multi-attribute method for quality control of therapeutic proteins[J]. Anal. Chem., 2019, 91(22): 14170-14177. | 
| [1] | Weili ZHAO, Na LYU, Huiqiang LI, Yahui HE, Lulu LI, Mingli LIANG, Yanyi LI. Research Progress of Virus-like Particles Vaccine [J]. Current Biotechnology, 2024, 14(5): 776-784. | 
| [2] | Yiwei ZHAO, Tianlu GAO, Jiahui ZHANG, Yuqi WANG, Pan CHANG, Hong WANG. Research Progress on the Imbalance of Mitochondrial Quality Control Leading to Renal Interstitial Fibrosis in Diabetic Kidney Disease [J]. Current Biotechnology, 2024, 14(5): 825-831. | 
| [3] | Dan LI, Haozhi SONG, Weisong GAO, Xingjian LIU, Zhifang ZHANG, Yinyu LI. Prokaryotic Expression and Immunogenicity Detection of the H Protein of Peste des Petits Ruminants Virus [J]. Current Biotechnology, 2021, 11(6): 770-776. | 
| [4] | YANG Xin, SONG Haozhi, LIU Xingjian, LI Yinyu, ZHANG Zhifang*. Expression of Chicken Interferon Kappa in Silkworm-baculovirus Expression System and the Antiviral Activity Assay [J]. Curr. Biotech., 2020, 10(3): 251-255. | 
| [5] | WANG Xianxiang1,2, ZHAO Ze2, WANG Peng2, LIU Xingjian2, HU Xiaoyuan2, ZHANG Zhifang2, LI Yinv2, FANG Lingli1, YE Aihua1*. Expression of Ovis aries λ3 Interferon in Silkworm-baculovirus Expression System and the Antiviral Activity Assay [J]. Curr. Biotech., 2019, 9(5): 502-508. | 
| [6] | DU Mengtan, LIU Xingjian, HU Xiaoyuan, ZHANG Zhifang, LI Yinv*. The Production Method of Adeno-associated Virus and its Application in Gene Therapy [J]. Curr. Biotech., 2019, 9(4): 326-331. | 
| [7] | XU Ping1, CHEN Yao2, LI Qian3, ZHANG Weijie2, YU Ping1, HU Qinhan1, ZHAO Ting1, MAO Guanghua2, FENG Weiwei2, YANG Liuqing1*. Progress on Preparation, Isolation and Biological Activities of Polypeptides from Insect Pupae [J]. Curr. Biotech., 2018, 8(5): 383-388. | 
| [8] | ZHAO Lulu1, ZHAO Ze2, YANG Xin1, LIU Xingjian1, HU Xiaoyuan1, ZHANG Zhifang1, LI Yinv1*. Expression of Bovine λ3 Interferon in Silkworm-baculovirus Expression System and the Antiviral Activity Assay [J]. Curr. Biotech., 2018, 8(5): 420-425. | 
| [9] | LU Nian1, LIU Xingjian1, HU Xiaoyuan1, LI Yinv1, YI Yongzhu2, ZHANG Zhifang1*. Package of Recombinant Adeno-associated Virus Type 2 Based on BmNPV-silkworm Expression System [J]. Curr. Biotech., 2018, 8(1): 71-77. | 
| [10] | YANG Qin, CHEN Hai-qin*, CHEN Si, GU Zhen-nan, ZHANG Hao, CHEN Yong-quan, CHEN Wei. Expression of the ω-3 Fatty Acid Desaturase from Mortierella alpina in Wheat-germ Cell-free Protein Expression System [J]. Curr. Biotech., 2016, 6(5): 346-351. | 
| [11] | ZHENG Hui-hui, JIANG Hong*. Progress of CHO Expression System [J]. Curr. Biotech., 2016, 6(4): 239-243. | 
| [12] | LIU Xing-jian1, YANG Xin1, ZHANG Zhi-fang1, LI Yi-nv1, YI Yong-zhu2, HU Xiao-yuan1*. Expression and Antiviral Activity Detection of Feline Interferon ω-like in Silkworm [J]. Curr. Biotech., 2015, 5(6): 441-445. | 
| [13] | ZHANG Yun-peng, WEN Tong, JIANG Wei*. The Research Progress of Escherichia coli Expression Systems and Yeast Expression Systems [J]. Curr. Biotech., 2014, 4(6): 389-393. | 
| [14] | TAO Wei-hong, QIN Min-min, ZHANG Zhe-ru. Strategy Discussion for CHO Cell Line Development [J]. Curr. Biotech., 2014, 4(6): 394-399. | 
| [15] | YAO Zheng-ying, ZHANG Wei-ming, SUN Li-jun*. Research Progress in Biotechnological Applications of Oil Bodies [J]. Curr. Biotech., 2014, 4(5): 318-324. | 
| Viewed | ||||||
| Full text |  | |||||
| Abstract |  | |||||