Current Biotechnology ›› 2025, Vol. 15 ›› Issue (4): 597-605.DOI: 10.19586/j.2095-2341.2024.0204
• Reviews • Previous Articles Next Articles
Yue SHI1,2(
), Yao HAN2, Hao LI2, Yansong SUN1,2(
)
Received:2024-12-23
Accepted:2025-03-05
Online:2025-07-25
Published:2025-09-08
Contact:
Yansong SUN
通讯作者:
孙岩松
作者简介:施玥E-mail: shiyoo22@163.com;
基金资助:CLC Number:
Yue SHI, Yao HAN, Hao LI, Yansong SUN. Application Progress of Biosensors Based on Field-effect Transistors in Nucleic Acid Detection[J]. Current Biotechnology, 2025, 15(4): 597-605.
施玥, 韩尧, 李浩, 孙岩松. 场效应晶体管生物传感器在核酸检测中的应用进展[J]. 生物技术进展, 2025, 15(4): 597-605.
| FET传感器探针类型 | 靶标类型 | 样本前处理 | 检测时间 | 检测限 | 参考文献 | |
|---|---|---|---|---|---|---|
| DNA | y形DNA双探针 | SARS-CoV-2 RNA | 模拟唾液样本 | 1 min | 0.03 copy·μL-1 | [ |
| 三茎结构DNA探针 | SARS-CoV-2变异株RNA | 模拟咽拭子样本 | 15 min | 0.03 copy·μL-1 | [ | |
| 四面体DNA纳米结构探针 | SARS-CoV-2 RNA | 加热释放核酸 | 80 s | 0.02 copy·μL-1 | [ | |
| 四面体 DNA结构三探针 | SARS-CoV-2 RNA | 50℃加热20 min | 5 min | 0.025 copy·μL-1 | [ | |
| 核酸适配体 | 核酸适配体+ssDNA | SARS-CoV-2 RNA | 15 min快速提取咽拭子样本核酸 | 1 min | Ct >35 | [ |
| 核酸适配体 | SARS-CoV-2 RNA | 加热释放核酸 | 4 min | 0.02 copy·μL-1 | [ | |
| 核酸类似物 | PMO | SARS-CoV-2 RNA | 呼吸道样本 RNA提取试剂盒 | 2 min | 2.29 fmol·L-1 | [ |
| PMO | DNA | / | 5 min | 6 fmol·L-1 | [ | |
| PNA | microRNA | 模拟血清样本 | 30 min | 10 fmol·L-1 | [ | |
| 报告RNA | 报告RNA+crRNA | CoV ORF1ab、 CoV N、 HCV RNA | 模拟唾液样本 | 30 min | 25 amol·L-1 | [ |
| 报告RNA+双crRNA | CoV ORF1ab、 CoV N RNA | 模拟咽拭子样本 | 30 min | 1.56 amol·L-1 | [ | |
| 报告RNA+crRNA | SARS-CoV-2 N RNA | 95℃加热5 min | 30 min | 1 amol·L-1 | [ | |
Table 1 Specifications and parameters of various types of FET sensors
| FET传感器探针类型 | 靶标类型 | 样本前处理 | 检测时间 | 检测限 | 参考文献 | |
|---|---|---|---|---|---|---|
| DNA | y形DNA双探针 | SARS-CoV-2 RNA | 模拟唾液样本 | 1 min | 0.03 copy·μL-1 | [ |
| 三茎结构DNA探针 | SARS-CoV-2变异株RNA | 模拟咽拭子样本 | 15 min | 0.03 copy·μL-1 | [ | |
| 四面体DNA纳米结构探针 | SARS-CoV-2 RNA | 加热释放核酸 | 80 s | 0.02 copy·μL-1 | [ | |
| 四面体 DNA结构三探针 | SARS-CoV-2 RNA | 50℃加热20 min | 5 min | 0.025 copy·μL-1 | [ | |
| 核酸适配体 | 核酸适配体+ssDNA | SARS-CoV-2 RNA | 15 min快速提取咽拭子样本核酸 | 1 min | Ct >35 | [ |
| 核酸适配体 | SARS-CoV-2 RNA | 加热释放核酸 | 4 min | 0.02 copy·μL-1 | [ | |
| 核酸类似物 | PMO | SARS-CoV-2 RNA | 呼吸道样本 RNA提取试剂盒 | 2 min | 2.29 fmol·L-1 | [ |
| PMO | DNA | / | 5 min | 6 fmol·L-1 | [ | |
| PNA | microRNA | 模拟血清样本 | 30 min | 10 fmol·L-1 | [ | |
| 报告RNA | 报告RNA+crRNA | CoV ORF1ab、 CoV N、 HCV RNA | 模拟唾液样本 | 30 min | 25 amol·L-1 | [ |
| 报告RNA+双crRNA | CoV ORF1ab、 CoV N RNA | 模拟咽拭子样本 | 30 min | 1.56 amol·L-1 | [ | |
| 报告RNA+crRNA | SARS-CoV-2 N RNA | 95℃加热5 min | 30 min | 1 amol·L-1 | [ | |
| [1] | 世界卫生组织. 国际卫生条例(2005)突发事件委员会第十四次会议关于新型冠状病毒肺炎(COVID-19)大流行的声明[EB/OL]. (2023-01-30) [2024-12-20]. . |
| [2] | MERCER A. Protection against severe infectious disease in the past[J]. Pathog. Glob. Health, 2021, 115(3): 151-167. |
| [3] | LAZCKA O, DEL CAMPO F J, MUÑOZ F X. Pathogen detection: a perspective of traditional methods and biosensors[J]. Biosens. Bioelectron., 2007, 22(7): 1205-1217. |
| [4] | GRACIAS K S, MCKILLIP J L. A review of conventional detection and enumeration methods for pathogenic bacteria in food[J]. Can. J. Microbiol., 2004, 50(11): 883-890. |
| [5] | CESEWSKI E, JOHNSON B N. Electrochemical biosensors for pathogen detection[J/OL]. Biosens. Bioelectron., 2020, 159: 112214[2025-03-25]. . |
| [6] | 张春雷.病原微生物检测技术研究进展[J].生物技术进展,2024,14(2):189-195. |
| ZHANG C L. Pathogens detection technology: a review[J]. Curr. Biotechnol., 2024, 14(2): 189-195. | |
| [7] | AHMAD W, GONG Y, ABBAS G, et al.. Evolution of low-dimensional material-based field-effect transistors[J]. Nanoscale, 2021, 13(10): 5162-5186. |
| [8] | SADIGHBAYAN D, HASANZADEH M, GHAFAR-ZADEH E. Biosensing based on field-effect transistors (FET): recent progress and challenges[J/OL]. Trends Analyt. Chem., 2020, 133: 116067[2025-03-25]. . |
| [9] | KAISTI M. Detection principles of biological and chemical FET sensors[J]. Biosens. Bioelectron., 2017, 98: 437-448. |
| [10] | WANG J, CHEN D, HUANG W, et al.. Aptamer-functionalized field-effect transistor biosensors for disease diagnosis and environmental monitoring[J/OL]. Exploration, 2023, 3(3): 20210027[2025-03-25]. . |
| [11] | ZHANG X, LIU T, BOYLE A, et al.. Dielectric-modulated biosensing with ultrahigh-frequency-operated graphene field-effect transistors[J/OL]. Adv. Mater., 2022, 34(7): e2106666[2025-03-25]. . |
| [12] | KONG D, WANG X, GU C, et al.. Direct SARS-CoV-2 nucleic acid detection by Y-shaped DNA dual-probe transistor assay[J]. J. Am. Chem. Soc., 2021, 143(41): 17004-17014. |
| [13] | ZHANG Y, CHEN B, CHEN D, et al.. Electrical detection assay based on programmable nucleic acid probe for efficient single-nucleotide polymorphism identification[J]. ACS Sens., 2023, 8(5): 2096-2104. |
| [14] | WANG X, KONG D, GUO M, et al.. Rapid SARS-CoV-2 nucleic acid testing and pooled assay by tetrahedral DNA nanostructure transistor[J]. Nano Lett., 2021, 21(22): 9450-9457. |
| [15] | WU Y, JI D, DAI C, et al.. Triple-probe DNA framework-based transistor for SARS-CoV-2 10-in-1 pooled testing[J]. Nano Lett., 2022, 22(8): 3307-3316. |
| [16] | LIANG Y, XIAO M, XIE J, et al.. Amplification-free detection of SARS-CoV-2 down to single virus level by portable carbon nanotube biosensors[J/OL]. Small, 2023, 19(34): e2208198[2025-03-25]. . |
| [17] | WANG L, WANG X, WU Y, et al.. Rapid and ultrasensitive electromechanical detection of ions, biomolecules and SARS-CoV-2 RNA in unamplified samples[J]. Nat. Biomed. Eng., 2022, 6(3): 276-285. |
| [18] | LI J, WU D, YU Y, et al.. Rapid and unamplified identification of COVID-19 with morpholino-modified graphene field-effect transistor nanosensor[J/OL]. Biosens. Bioelectron., 2021, 183: 113206[2025-03-25]. . |
| [19] | MEI J, LI Y T, ZHANG H, et al.. Molybdenum disulfide field-effect transistor biosensor for ultrasensitive detection of DNA by employing morpholino as probe[J]. Biosens. Bioelectron., 2018, 110: 71-77. |
| [20] | CAI B, HUANG L, ZHANG H, et al.. Gold nanoparticles-decorated graphene field-effect transistor biosensor for femtomolar microRNA detection[J]. Biosens. Bioelectron., 2015, 74: 329-334. |
| [21] | LI J, TANG L, LI T, et al.. Tandem Cas13a/crRNA-mediated CRISPR-FET biosensor: a one-for-all check station for virus without amplification[J]. ACS Sens., 2022, 7(9): 2680-2690. |
| [22] | 李加好.基于石墨烯场效应晶体管生物传感器的病毒核酸免扩增、高灵敏检测[D].武汉: 湖北中医药大学, 2022. |
| [23] | LI H, YANG J, WU G, et al.. Amplification-free detection of SARS-CoV-2 and respiratory syncytial virus using CRISPR Cas13a and graphene field-effect transistors[J/OL]. Angew. Chem. Int. Ed., 2022, 61(32): e202203826[2025-03-25]. . |
| [24] | USLU F, INGEBRANDT S, MAYER D, et al.. Labelfree fully electronic nucleic acid detection system based on a field-effect transistor device[J]. Biosens. Bioelectron., 2004, 19(12): 1723-1731. |
| [25] | HAN Y, OFFENHÄUSSER A, INGEBRANDT S. Detection of DNA hybridization by a field-effect transistor with covalently attached catcher molecules[J]. Surf. Interface Anal., 2006, 38(4): 176-181. |
| [26] | HUA Y, MA J, LI D, et al.. DNA-based biosensors for the biochemical analysis: a review[J/OL]. Biosensors, 2022, 12(3): 183[2025-03-25]. . |
| [27] | HONG S, JIANG W, DING Q, et al.. The current progress of tetrahedral DNA nanostructure for antibacterial application and bone tissue regeneration[J]. Int. J. Nanomedicine, 2023, 18: 3761-3780. |
| [28] | NING Y, HU J, LU F. Aptamers used for biosensors and targeted therapy[J/OL]. Biomed. Pharmacother., 2020, 132: 110902[2025-03-25]. . |
| [29] | 戴邵亮.基于适配体的沙门氏菌检测方法研究进展[J].食品安全质量检测学报,2019,10(14):4589-4596. |
| DAI S L. Research progress of detection method of Salmonella based on aptamer[J]. J. Food Saf. Qual., 2019, 10(14): 4589-4596. | |
| [30] | MA H, LIU J, ALI M M, et al.. Nucleic acid aptamers in cancer research, diagnosis and therapy[J]. Chem. Soc. Rev., 2015, 44(5): 1240-1256. |
| [31] | ZHANG G J, ZHANG G, CHUA J H, et al.. DNA sensing by silicon nanowire: charge layer distance dependence[J]. Nano Lett., 2008, 8(4): 1066-1070. |
| [32] | PELLESTOR F, PAULASOVA P. The peptide nucleic acids, efficient tools for molecular diagnosis (review)[J]. Int. J. Mol. Med., 2004, 13(4): 521-525. |
| [33] | GUO D, ZHUO M, ZHANG X, et al.. Indium-tin-oxide thin film transistor biosensors for label-free detection of avian influenza virus H5N1[J]. Anal. Chim. Acta, 2013, 773: 83-88. |
| [34] | LIANG Y, XIAO M, WU D, et al.. Wafer-scale uniform carbon nanotube transistors for ultrasensitive and label-free detection of disease biomarkers[J]. ACS Nano, 2020, 14(7): 8866-8874. |
| [35] | RAJAN A, SHRIVASTAVA S, JANHAW I, et al.. CRISPR-Cas system: from diagnostic tool to potential antiviral treatment[J]. Appl. Microbiol. Biotechnol., 2022, 106(18): 5863-5877. |
| [36] | ZHAO L, QIU M, LI X, et al.. CRISPR-Cas13a system: a novel tool for molecular diagnostics[J/OL]. Front. Microbiol., 2022, 13: 1060947[2025-03-25]. . |
| [37] | FORSYTH R, DEVADOSS A, GUY O J. Graphene field effect transistors for biomedical applications: current status and future prospects[J/OL]. Diagnostics, 2017, 7(3): 45[2025-03-25]. . |
| [38] | HWANG M T, WANG Z, PING J, et al.. DNA nanotweezers and graphene transistor enable label-free genotyping[J/OL]. Adv. Mater., 2018: e1802440[2025-03-25]. . |
| [39] | SUN Y, YANG C, JIANG X, et al.. High-intensity vector signals for detecting SARS-CoV-2 RNA using CRISPR/Cas13a couple with stabilized graphene field-effect transistor[J/OL]. Biosens. Bioelectron., 2023, 222: 114979[2025-03-25]. . |
| [40] | WANG Q, BAO L, WANG L, et al.. Duplex-specific-nuclease-assisted graphene field-effect transistor biosensor: a novel platform for preamplification-free detection of cancer related miRNA[J/OL]. Carbon, 2024, 230: 119670[2025-03-25]. . |
| [41] | FU W, FENG L, MAYER D, et al.. Electrolyte-gated graphene ambipolar frequency multipliers for biochemical sensing[J]. Nano Lett., 2016, 16(4): 2295-2300. |
| [42] | 陈硕,高佳奇,王迪,等.DNA四面体纳米结构及其在生物技术领域的应用进展[J].生物技术进展,2020,10(6):661-667. |
| CHEN S, GAO J Q, WANG D, et al.. DNA tetrahedral nanostructure and its application progress in biotechnology[J]. Curr. Biotechnol., 2020, 10(6): 661-667. | |
| [43] | JEONG S, SON S U, KIM J, et al.. Rapid and simultaneous multiple detection of a tripledemic using a dual-gate oxide semiconductor thin-film transistor-based immunosensor[J/OL]. Biosens. Bioelectron., 2023, 241: 115700[2025-03-25]. . |
| [44] | TU J, MIN J, SONG Y, et al.. A wireless patch for the monitoring of C-reactive protein in sweat[J]. Nat. Biomed. Eng., 2023, 7(10): 1293-1306. |
| [1] | Yuqi YANG, Xiuxia HE. Application of Rolling Circle Amplification Technique in Electrochemical Biosensors [J]. Current Biotechnology, 2023, 13(6): 863-867. |
| [2] | Shuaishuai KANG, Ruian WANG, Wentao XU, Longjiao ZHU. Magnetic Aptamer Biosensors [J]. Current Biotechnology, 2023, 13(3): 339-344. |
| [3] | Enze CHENG-CHEN, Minghong JIA, Yueying LI. Research Progress of Nucleic Acid Reference Materials of Food-borne Pathogenic Bacteria [J]. Current Biotechnology, 2023, 13(2): 195-200. |
| [4] | Doudou LEI, Runran MA, Jiabo WANG, Weijun KONG. Research Progress on New Biological Detection Technology for Pesticide Residues in Foods [J]. Current Biotechnology, 2023, 13(1): 1-10. |
| [5] | Wenzhuo ZHAO, Chengxun LI, Zuojian HU, Hongxiu YU. Research Progress of Functional Nucleic Acid Used in Pathogenic Bacteria Detection [J]. Current Biotechnology, 2023, 13(1): 30-38. |
| [6] | Keren CHEN, Weishen WANG, Longjiao ZHU, Yangzi ZHANG, Xiaoyun HE, Kunlun HUANG, Wentao XU. Research Progress of Nucleic Acid⁃based Self⁃assembling Nanocarriers [J]. Current Biotechnology, 2022, 12(3): 352-357. |
| [7] | Wentao XU, Min YANG, Longjiao ZHU, Yangzi ZHANG, Hongyu LI, Zaihui DU, Wenping YANG. The Connotation and Extension of the Functional Nucleic Acid [J]. Current Biotechnology, 2021, 11(4): 446-454. |
| [8] | GERILEQIMUGE, NIU Zhenfeng, DONG Dan, ZHANG Taotao, ZHENG Rong. Application Progress of CRISPR-Cas System in Microbial Research [J]. Current Biotechnology, 2021, 11(3): 253-259. |
| [9] | LIU Wang, JIN Jinghao, CHEN Xiaoren. Application Progress of Loop-mediated Isothermal Amplification Technique [J]. Current Biotechnology, 2021, 11(2): 128-135. |
| [10] | YANG Jiayi1§*, CHEN Guifang2§, GAO Yunhuan1, WANG Zhidong1, WU Xiao1. Research Progress of Reference Material for HPV Nucleic Acid Detection [J]. Curr. Biotech., 2020, 10(6): 590-596. |
| [11] | HU Sihong, YOU Guoye. Application Prospects of Digital PCR in Detection of SARS-CoV-2 [J]. Curr. Biotech., 2020, 10(6): 674-679. |
| [12] | REN Wen1, YANG Haixia2, CHEN Lizhu2, LI Yufeng2, LIU Ya1*. Establishment and Application of Nucleic Acid Chromatography for Rapid Detection of Transgenic Plants [J]. Curr. Biotech., 2020, 10(6): 680-687. |
| [13] | XU Lei1,XIAO Guiqing2,SHENG Xiaojing1,QI Zhiqing1*,DIAO Yong1*. Research Progress on PCR Enhancer in Nucleic Acid in vitro Amplification Detection Technology [J]. Curr. Biotech., 2020, 10(2): 137-143. |
| [14] | MA Xuan1, ZHANG Yangzi1, XU Wentao1,2*. Progress on Physicochemical Properties and Applications of Functional Nucleic Acid DNA Hydrogels [J]. Curr. Biotech., 2019, 9(6): 545-553. |
| [15] | MA Xuan1, ZHANG Yangzi1, XU Wentao1,2*. Preparation and Assembly of Functional Nucleic Acid DNA Hydrogels [J]. Curr. Biotech., 2019, 9(6): 554-562. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||