Current Biotechnology ›› 2021, Vol. 11 ›› Issue (5): 653-659.DOI: 10.19586/j.2095-2341.2021.0113
• Prevention and Management of Fusarium Head Blight • Previous Articles
Zhengxi SUN(
), Sijia HU, Yilei ZHOU, Yi HU, Ning JIANG, Lei LI, Tao LI(
)
Received:2021-06-15
Accepted:2021-07-15
Online:2021-09-25
Published:2021-10-08
Contact:
Tao LI
孙政玺(
), 胡思嘉, 周益雷, 胡怡, 江宁, 李磊, 李韬(
)
通讯作者:
李韬
作者简介:孙政玺 E-mail:007179@yzu.edu.cn;
基金资助:CLC Number:
Zhengxi SUN, Sijia HU, Yilei ZHOU, Yi HU, Ning JIANG, Lei LI, Tao LI. Overview of Small RNAs and Their Potential Application in Protection of Wheat Against Fusarium Head Blight[J]. Current Biotechnology, 2021, 11(5): 653-659.
孙政玺, 胡思嘉, 周益雷, 胡怡, 江宁, 李磊, 李韬. sRNA的研究概述及其在小麦赤霉病防治中的应用展望[J]. 生物技术进展, 2021, 11(5): 653-659.
| 1 | SONG X, LI Y, CAO X, et al.. MicroRNAs and their regulatory roles in plant-environment interactions [J]. Annu. Rev. Plant Biol., 2019, 70:489-525. |
| 2 | SUN X, LIN L, SUI N. Regulation mechanism of microRNA in plant response to abiotic stress and breeding [J]. Mol. Biol. Rep., 2019, 46:1447-1457. |
| 3 | LIU H, YU H, TANG G, et al.. Small but powerful: function of microRNAs in plant development [J]. Plant Cell Rep., 2018, 37(3):515-528. |
| 4 | YU Y, JIA T, CHEN X. The 'how' and 'where' of plant microRNAs [J]. New Phytol., 2017, 216(4):1002-1017. |
| 5 | BRODERSEN P, SAKVARELIDZE-ACHARD L, BRUUN-RASMUSSEN M, et al.. Widespread translational inhibition by plant miRNAs and siRNAs [J]. Science, 2008, 320(5880):1185-1190. |
| 6 | DALMAY T, HAMILTON A, RUDD S, et al.. An RNA-dependent RNA polymerase gene in Arabidopsis is required for posttranscriptional gene silencing mediated by a transgene but not by a virus [J]. Cell, 2000, 101(5):543-553. |
| 7 | YOSHIKAWA M, PERAGINE A, PARK M Y, et al.. A pathway for the biogenesis of trans-acting siRNAs in Arabidopsis [J]. Gene Dev., 2005, 19:2164-2175. |
| 8 | KATIYAR-AGARWAL S, MORGAN R, DAHLBECK D, et al.. A pathogen-inducible endogenous siRNA in plant immunity [J/OL]. Proc. Natl. Acad. Sci. USA, 2006, 103(47):18002[2021-08-06]. . |
| 9 | MATZKE M A, BIRCHLER J A. RNAi-mediated pathways in the nucleus [J]. Nat. Rev. Genet., 2005, 6:24-35. |
| 10 | MATZKE M, KANNO T, DAXINGER L, et al.. RNA-mediated chromatin-based silencing in plants [J]. Curr. Opin. Cell Biol., 2009, 21(3):367-376. |
| 11 | PIKAARD C S, HAAG J R, REAM T, et al.. Roles of RNA polymerase IV in gene silencing [J]. Trends Plant Sci., 2008, 13(7):390-397. |
| 12 | KATIYAR-AGARWAL S, GAO S, VIVIAN-SMITH A, et al.. A novel class of bacteria-induced small RNAs in Arabidopsis [J]. Genes Dev., 2007, 21:3123-3134. |
| 13 | DELERIS A, GALLEGO-BARTOLOME J, BAO J, et al.. Hierarchical action and inhibition of plant Dicer-like proteins in antiviral defense [J]. Science, 2006, 313(5783):68-71. |
| 14 | WU H, LI B, IWAKAWA H O, et al.. Plant 22-nt siRNAs mediate translational repression and stress adaptation [J]. Nature, 2020, 581(7806):89-93. |
| 15 | HENDERSON I R, ZHANG X, LU C, et al.. Dissecting Arabidopsis thaliana DICER function in small RNA processing, gene silencing and DNA methylation patterning [J]. Nat. Genet., 2006, 38:721-725. |
| 16 | MA X, LIU C, KONG X, et al.. Extensive profiling of the expressions of tRNAs and tRNA-derived fragments (tRFs) reveals the complexities of tRNA and tRF populations in plants [J]. Sci. China Life Sci., 2021, 64(4):495-511. |
| 17 | LI S, XU Z, SHENG J. tRNA-derived small RNA: A novel regulatory small non-coding RNA [J/OL]. Genes, 2018, 9(5):246[2021-08-06]. . |
| 18 | YAMASAKI S, IVANOV P, HU G F, et al.. Angiogenin cleaves tRNA and promotes stress-induced translational repression [J]. J. Cell Biol., 2009, 185(1):35-42. |
| 19 | THOMPSON D M, PARKER R. Stressing out over tRNA cleavage [J]. Cell, 2009, 138(2):215-219. |
| 20 | ANDERSEN K L, COLLINS K. Several RNase T2 enzymes function in induced tRNA and rRNA turnover in the ciliate Tetrahymena [J]. Mol. Biol. Cell, 2012, 23(1):36-44. |
| 21 | KUMAR P, ANAYA J, MUDUNURI S B, et al.. Meta-analysis of tRNA derived RNA fragments reveals that they are evolutionarily conserved and associate with AGO proteins to recognize specific RNA targets [J/OL]. BMC Biol., 2014, 12:78[2021-08-06]. . |
| 22 | LI Z, ENDER C, MEISTER G, et al.. Extensive terminal and asymmetric processing of small RNAs from rRNAs, snoRNAs, snRNAs, and tRNAs [J]. Nucl. Acids Res., 2012, 40(14):6787-6799. |
| 23 | MARTINEZ G, CHOUDURY S G, SLOTKIN R K. tRNA-derived small RNAs target transposable element transcripts [J]. Nucl. Acids Res., 2017, 45(9):5142-5152. |
| 24 | MEGEL C, HUMMEL G, LALANDE S, et al.. Plant RNases T2, but not dicer-like proteins, are major players of tRNA-derived fragments biogenesis [J]. Nucl. Acids Res., 2019, 47(2):941-952. |
| 25 | MAUTE R L, SCHNEIDER C, SUMAZIN P, et al.. tRNA-derived microRNA modulates proliferation and the DNA damage response and is down-regulated in B cell lymphoma [J]. Proc. Natl. Acad. Sci. USA, 2013, 110(4):1404-1409. |
| 26 | KAWAMURA Y, SAITO K, KIN T, et al.. Drosophila endogenous small RNAs bind to Argonaute 2 in somatic cells [J]. Nature, 2008, 453(7196):793-797. |
| 27 | LEE Y S, SHIBATA Y, MALHOTRA A, et al.. A novel class of small RNAs: tRNA-derived RNA fragments (tRFs) [J]. Genes Dev., 2009, 23(22):2639-2649. |
| 28 | CHEN Q, YAN M, CAO Z, et al.. Sperm tsRNAs contribute to intergenerational inheritance of an acquired metabolic disorder [J]. Science, 2016, 351(6271):397-400. |
| 29 | VENEZIANO D, TOMASELLO L, BALATTI V, et al.. Dysregulation of different classes of tRNA fragments in chronic lymphocytic leukemia [J]. Proc. Natl. Acad. Sci. USA, 2019, 116(48):24252-24258. |
| 30 | GOODARZI H, LIU X, NGUYEN H C, et al.. Endogenous tRNA-derived fragments suppress breast cancer progression via YBX1 displacement [J]. Cell, 2015, 161(4):790-802. |
| 31 | ALVES C S, VICENTINI R, DUARTE G T, et al.. Genome-wide identification and characterization of tRNA-derived RNA fragments in land plants [J]. Plant Mol. Biol., 2017, 93:35-48. |
| 32 | GUPTA N, SINGH A, ZAHRA S, et al.. PtRFdb: a database for plant transfer RNA-derived fragments [J/OL]. Database, 2018:bay063[2021-08-06]. . |
| 33 | REN B, WANG X, DUAN J, et al.. Rhizobial tRNA-derived small RNAs are signal molecules regulating plant nodulation [J]. Science, 2019, 365(6456):919-922. |
| 34 | TANG D, WANG G, ZHOU J M. Receptor kinases in plant-pathogen interactions: more than pattern recognition [J]. Plant Cell, 2017, 29(4):618-637. |
| 35 | HUANG G, ALLEN R, DAVIS E L, et al.. Engineering broad root-knot resistance in transgenic plants by RNAi silencing of a conserved and essential root-knot nematode parasitism gene [J]. Proc. Natl. Acad. Sci. USA, 2006, 103(39):14302-14306. |
| 36 | MOLNAR A, MELNYK C W, BASSETT A, et al.. Small silencing RNAs in plants are mobile and direct epigenetic modification in recipient cells [J]. Science, 2010, 328(5980):872-875. |
| 37 | NAVARRO L, DUNOYER P, JAY F, et al.. A plant miRNA contributes to antibacterial resistance by repressing auxin signaling [J]. Science, 2006, 312(5772):436-439. |
| 38 | NIU D, LII Y E, CHELLAPPAN P, et al.. miRNA863-3p sequentially targets negative immune regulator ARLPKs and positive regulator SERRATE upon bacterial infection [J/OL]. Nat. Commun., 2016, 7:11324[2021-08-06]. . |
| 39 | BOCCARA M, SARAZIN A, THIEBEAULD O, et al.. The Arabidopsis miR472-RDR6 silencing pathway modulates PAMP- and effector-triggered immunity through the post-transcriptional control of disease resistance genes [J/OL]. PLoS Pathog., 2014, 10(1):e1003883[2021-08-06]. . |
| 40 | SHIVAPRASAD P V, CHEN H M, PATEL K, et al.. A microRNA superfamily regulates nucleotide binding site-leucine-rich repeats and other mRNAs [J]. Plant Cell, 2012, 24(3):859-874. |
| 41 | LI F, PIGNATTA D, BENDIX C, et al.. MicroRNA regulation of plant innate immune receptors [J]. Proc. Natl. Acad. Sci. USA, 2012, 109(5):1790-1795. |
| 42 | LI Y, LU Y G, SHI Y, et al.. Multiple rice microRNAs are involved in immunity against the blast fungus Magnaporthe oryzae [J]. Plant Physiol., 2014, 164(2):1077-1092. |
| 43 | ZHU Q H, FAN L, LIU Y, et al.. miR482 regulation of NBS-LRR defense genes during fungal pathogen infection in cotton [J/OL]. PLoS ONE, 2013, 8(12):e84390[2021-08-06]. . |
| 44 | LIU M, SHI Z, ZHANG X, et al.. Inducible overexpression of Ideal Plant Architecture1 improves both yield and disease resistance in rice [J]. Nat. Plants, 2019, 5(4):389-400. |
| 45 | GUPTA O P, PERMAR V, KOUNDAL V, et al.. MicroRNA regulated defense responses in Triticum aestivum L. during Puccinia graminis f.sp. tritici infection [J]. Mol. Biol. Rep., 2012, 39:817-824. |
| 46 | MUETH N A, RAMACHANDRAN S R, HULBERT S H. Small RNAs from the wheat stripe rust fungus (Puccinia striiformis f.sp. tritici) [J/OL]. BMC Genomics, 2015, 16:718[2021-08-06]. . |
| 47 | ZHANG T, ZHAO Y L, ZHAO J H, et al.. Cotton plants export microRNAs to inhibit virulence gene expression in a fungal pathogen [J/OL]. Nat. Plants, 2016, 2:16153[2021-08-06]. . |
| 48 | WATERHOUSE P M, FUSARO A F. Plant science. Viruses face a double defense by plant small RNAs [J]. Science, 2006, 313(5783):54-55. |
| 49 | NOWARA D, GAY A, LACOMME C, et al.. HIGS: host-induced gene silencing in the obligate biotrophic fungal pathogen Blumeria graminis [J]. Plant Cell, 2010, 22(9):3130-3141. |
| 50 | LANGE M, YELLINA A L, ORASHAKOVA S, et al.. Virus-induced gene silencing (VIGS) in plants: an overview of target species and the virus-derived vector systems [J]. Methods Mol. Biol., 2013, 975:1-14. |
| 51 | WANG B, SUN Y, SONG N, et al.. Puccinia striiformis f. sp. tritici microRNA-like RNA 1 (Pst-milR1), an important pathogenicity factor of Pst, impairs wheat resistance to Pst by suppressing the wheat pathogenesis-related 2 gene [J]. New Phytol., 2017, 215(1):338-350. |
| 52 | WEIBERG A, WANG M, LIN F M, et al.. Fungal small RNAs suppress plant immunity by hijacking host RNA interference pathways [J]. Science, 2013, 342(6154):118-123. |
| 53 | DUNKER F, TRUTZENBERG A, ROTHENPIELER J S, et al.. Oomycete small RNAs bind to the plant RNA-induced silencing complex for virulence [J/OL]. Elife, 2020, 9:e56096[2021-08-06]. . DOI: 10.7554/ELIFE.56096. |
| 54 | YAO Y, GUO G, NI Z, et al.. Cloning and characterization of microRNAs from wheat (Triticum aestivum L.) [J/OL]. Genome Biol., 2007, 8:R96[2021-08-06]. . |
| 55 | SU C, YANG X, GAO S, et al.. Identification and characterization of a subset of microRNAs in wheat (Triticum aestivum L.) [J]. Genomics, 2014, 103(4):298-307. |
| 56 | LIU J, CHENG X, LIU P, et al.. miR156-targeted SBP-box transcription factors interact with DWARF53 to regulate TEOSINTE BRANCHED1 and BARREN STALK1 expression in bread wheat [J]. Plant Physiol., 2017, 174(3):1931-1948. |
| 57 | SU Z, BERNARDO A, TIAN B, et al.. A deletion mutation in TaHRC confers Fhb1 resistance to Fusarium head blight in wheat [J]. Nat. Genet., 2019, 51(7):1099-1105. |
| 58 | WANG H, SUN S, GE W, et al.. Horizontal gene transfer of Fhb7 from fungus underlies Fusarium head blight resistance in wheat [J/OL]. Science, 2020, 368(6493):eaba5435[2021-08-06]. . DOI: 10.1126/science.aba5435. |
| 59 | LI G, ZHOU J, JIA H, et al.. Mutation of a histidine-rich calcium-binding-protein gene in wheat confers resistance to Fusarium head blight [J]. Nat. Genet., 2019,51(7):1106-1112. |
| 60 | RAWAT N, PUMPHREY M O, LIU S, et al.. Wheat Fhb1 encodes a chimeric lectin with agglutinin domains and a pore-forming toxin-like domain conferring resistance to Fusarium head blight [J]. Nat. Genet., 2016, 48:1576-1580. |
| 61 | JIN X, JIA L, WANG Y, et al.. Identification of Fusarium graminearum-responsive miRNAs and their targets in wheat by sRNA sequencing and degradome analysis [J]. Funct. Integr. Genomics, 2019,20(1):51-61. |
| 62 | JIAO J, PENG D. Wheat microRNA1023 suppresses invasion of Fusarium graminearum via targeting and silencing FGSG_03101 [J]. J. Plant Interact., 2018, 13:514-521. |
| 63 | JIAO J, XU L. One Small RNA of Fusarium graminearum targets and silences CEBiP Gene in common wheat [J/OL]. Microorganisms, 2019, 7(10):425[2021-08-06]. . |
| 64 | WERNER B T, GAFFAR F Y, SCHUEMANN J, et al.. RNA-spray-mediated silencing of Fusarium graminearum AGO and DCL genes improve barley disease resistance [J/OL]. Front. Plant Sci., 2020, 11:476[2021-08-06]. . |
| 65 | KOCH A, BIEDENKOPF D, FURCH A, et al.. An RNAi-based control of Fusarium graminearum infections through spraying of long dsRNAs involves a plant passage and is controlled by the fungal silencing machinery [J/OL]. PLoS Pathog., 2016, 12:e1005901[2021-08-06]. . |
| 66 | COUZIGOU J M, ANDRE O, GUILLOTIN B, et al.. Use of microRNA-encoded peptide miPEP172c to stimulate nodulation in soybean [J]. New Phytol., 2016, 211(2):379-381. |
| [1] | Bingyue QIU, Jiateng SHI, Jing JIN. Research Progress of siRNA Gene Therapy in Tendon Injury Repair [J]. Current Biotechnology, 2025, 15(3): 411-417. |
| [2] | Huanzhen WU, Ye YANG, Xiuming CUI, Yuan LIU. The Current Status and Improvement Strategies of Agricultural Biological Control Technology [J]. Current Biotechnology, 2024, 14(5): 697-711. |
| [3] | Bowen WANG, Jinxing WANG, Chengyao QIU, Qingxian QIN, Juxiang WANG, Bo YAO, Hongyan LI, Guanxin TAN, Yingwei YANG, Guanghai JI. Control of Tobacco Bacterial Wilt by Bacillus velezensis Combined with Calcium-containing Soil Conditioner [J]. Current Biotechnology, 2024, 14(5): 839-847. |
| [4] | Dan CAO, Linlong MA, Yanli LIU, Lili WANG, Xiaofang JIN. Advance on MicroRNA Involved in Nutrient Element Stress in Plant [J]. Current Biotechnology, 2022, 12(6): 801-805. |
| [5] | Xin HU, Huici MA, Mingsheng HAN, Xiaohong YUAN, Mingyu YANG, Yanqin MA. Screening of Triple⁃negative Breast Cancer⁃associated miRNAs and Bioinfor⁃matics Analysis of the Target Genes [J]. Current Biotechnology, 2022, 12(2): 296-304. |
| [6] | Limei XIAN, Yi HU, Lei LI, Zhengxi SUN, Xinyao HE, Tao LI. A Brief Review on Fusarium Head Blight Resistance Types and the Corresponding Phenotyping Methods [J]. Current Biotechnology, 2021, 11(5): 554-559. |
| [7] | Yiwei WANG, Yigao FENG, Runran LIU, Chuntian LU, Aizhong CAO, Ruiqi ZHANG. Introgression and Characterization of the Homologous Group 1 Chromosomes from Roegneria kamoji into Common Wheat [J]. Current Biotechnology, 2021, 11(5): 567-573. |
| [8] | Yonggang WANG, Xu ZHANG, Peng ZHANG, Hongxiang MA. Plant Cell Engineering Applied in Wheat Breeding for the Resistance to FusariumHead Blight [J]. Current Biotechnology, 2021, 11(5): 574-580. |
| [9] | Wenling ZHAI, Caiyun LIU, Ying LIU, Bisheng FU, Jin CAI, Wei GUO, Qiaofeng ZHANG, Jizhong WU. Phenotypic and Molecular Identification of New Wheat Germplasm Resistant to Fusarium Head Blight [J]. Current Biotechnology, 2021, 11(5): 581-589. |
| [10] | Yong ZHANG, Wenjing HU, Chunmei ZHANG, Zhengning JIANG, Guofeng LV, Derong GAO. Analysis and Prospect of Fusarium Head Blight Resistance for New Wheat Varieties (Lines) Bred During “the 13th Five‑year Plan” [J]. Current Biotechnology, 2021, 11(5): 590-598. |
| [11] | Dongao LI, Huiquan LIU, Qinhu WANG. Research Progress on Wheat Transcriptomes Responsive to Fusarium graminearum Infection [J]. Current Biotechnology, 2021, 11(5): 610-617. |
| [12] | Jiajun LIU, Chen CHEN, Mingxing WEN, Rui GUO, Weicheng YAO, Dongsheng LI. Combining WGCNA and PPI Network for Identifying Hub Proteins Associated with Fusarium Head Blight Responses in Wheat [J]. Current Biotechnology, 2021, 11(5): 628-633. |
| [13] | Bing LI, Jingang LIANG, Yupan ZHU, Yuqi WANG, Zhen JIAO. Epidemiological Analysis and Management Strategies of Fusarium Head Blight of Wheat [J]. Current Biotechnology, 2021, 11(5): 647-652. |
| [14] | XING Lijuan1,LIU Yueping2*,WANG Lei1,XU Miaoyun1*. Research Progress of miRNA Involved in Regulation of Plant Embryo and Endosperm Development [J]. Curr. Biotech., 2020, 10(2): 109-116. |
| [15] | HUANG Chunmeng1,2, ZHU Pengyu1, WANG Zhi1, WANG Chenguang1, DU Zhixin3, WEI Shuang4, ZHANG Yongjiang1, FU Wei1*. Progress on RNAi-based Transgenic Plants [J]. Curr. Biotech., 2020, 10(1): 1-9. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||