甘露糖赤藓糖醇脂(mannosylerythritol lipids, MELs)是一种生物表面活性剂,除具有可降解、毒性低、生物兼容性好等优点,还因其特有的代谢、合成途径与结构特性,而具有基因转染、广谱抗菌、皮肤修复等多种功能。MELs在医疗、日化、食品、农业、生态修复等各领域应用前景巨大,被公认为是现今最有潜力的生物表面活性剂。然而,不同种属所生产的MELs之间结构差异性大且生产方式较落后,合成与作用机制尚不清晰,因而无法实现规模商业化生产。从结构特性、生产纯化、应用途径等方面重点阐述了MELs相关研究进展,以期阐明其结构与功能的多样性,为实现靶向MELs的定制生产,降低生产成本,加快实现其规模化应用提供参考。
植物基因的表达决定了植物的表型特征,而基因的表达受启动子的直接调控。启动子作为基因的一个组成部分,控制着基因表达(转录)的起始时间和表达程度。利用基因编辑技术对启动子进行定向编辑之后,会因为基因序列特有的重组排列、顺式表达等因素使得植物中的某个或某些基因的表达模式发生改变,进而影响基因功能。这些改变最终直接或间接地改变了植物的外在表型特征,而一些正向改变会对植物的品质起到优化和改良作用。综合近几年基因编辑技术对启动子的研究,主要从启动子的构成与分类、基因编辑技术和启动子编辑的研究进展这3个方面对启动子的编辑在植物中的应用进行了概述和总结,以期为启动子编辑技术应用于植物改良提供参考。
婆罗双树样基因4 (spalt-like transcription factor 4, SALL4)是2002年发现的SALL转录因子家族新成员,在维持胚胎干细胞(embryonic stem cells, ESCs)自我更新和多能性方面起着至关重要的作用。SALL4在胚胎干细胞和生殖细胞中特异表达,而在大多数成体细胞中表达下调或沉默。然而,近年来的研究表明,SALL4可以在白血病、乳腺癌、胃癌、卵巢癌、肝癌、肺癌、黑色素瘤等多种肿瘤中表达,显示出癌胚抗原特性,且SALL4表达水平与肿瘤进展及患者的不良预后和生存期直接相关。SALL4在肿瘤中的表达是由多种细胞因子介导的,并作为转录因子调控下游基因表达和信号通路,进而促进肿瘤的发生、转移、代谢和耐药等。靶向抑制SALL4的表达或生物学功能已经显示出显著的抗肿瘤效果。由于SALL4在肿瘤组织中的高表达和促进肿瘤发展的特性,它被认为是新的肿瘤标志物和潜在的治疗靶点。简要概述了SALL4蛋白的结构和功能,探讨了其激活表达的分子机制,并着重介绍了SALL4在肿瘤发生和发展中的作用机制、其在诊断上的价值以及靶向治疗的潜在意义。希望能够为肿瘤的临床治疗提供有益的参考数据。
生物酶和微生物在烟叶醇化发酵过程中发挥着重要作用。目前,利用生物酶和微生物技术提高烟叶品质、改善烟叶香气,已成为烟草行业关注的热点。利用酶制剂处理烟叶可以降解烟叶的蛋白质、果胶、纤维素等生物大分子,以达到提高烟叶品质和改善烟叶香气的作用。利用微生物对烟叶进行发酵可以有效调整和改善烟叶内部化学组分的比例,增加烟叶中的香气物质。综述了生物酶和微生物技术在烟叶产香发酵中的研究进展及其在烟叶发酵机理及增香技术中的应用,重点阐述了微生物和生物酶提高烟叶香气、改善烟叶品质以及降解烟叶中蛋白质、淀粉、果胶、纤维素等大分子物质的研究现状,分析了目前微生物和生物酶在实际应用中存在的问题,以期为今后使用生物酶和微生物技术改善烟叶香气提供理论依据。
由食源性致病菌引发的疾病对人类健康构成巨大威胁。虽然一些致病菌如金黄色葡萄球菌、大肠杆菌和沙门氏菌等在诊断和预防方面已经取得了重大进展,但开发快速、高效、低成本的检测方法仍然是一项挑战。功能核酸(functional nucleic acids,FNAs)是一类功能超出核酸常规遗传作用的核酸,主要包括天然的核酶(RNAzymes)、核糖开关(riboswitches)以及体外通过指数富集配体系统进化技术(systematic evolution of ligands by exponential enrichment,SELEX)筛选的适配体(aptamers)、核酶(RNAzymes)和脱氧核酶(DNAzymes)。适配体和脱氧核酶因具有较高的稳定性、特异性和可设计性,使其成为病原微生物识别的理想工具,近年来在生物传感和医学诊断领域备受关注。综述了功能核酸的筛选原理和流程、适配体及具有RNA裂解活性的脱氧核酶(RNA cleavage deoxyribozymes,RCDs)在致病菌检测中的应用进展和面临的挑战,并对其未来的发展前景进行了展望。
糖尿病是世界性疾病,更是严重的公共卫生问题。世界卫生组织(World Health Organization, WHO)将糖化血红蛋白A1c(glycated hemoglobin A1c,HbA1c)确定为糖尿病诊断标准,这对于糖尿病的诊断、监测和治疗具有重要临床意义。近年来,国内外开展了大量有关HbA1c实验室检测方法与标准化的相关技术研究工作,形成了一系列检测方法和标准体系,取得了一定成果。介绍了具有代表性的HbA1c实验室检测技术及国内外HbA1c标准化研究进程,并对当前存在的技术难题进行了分析和展望,以期有助于临床实验室选择合适的检测方法,并推进我国HbA1c标准化工作的发展。
为了探究微塑料生物毒性研究现状、热点及趋势,以Web of Science核心合集和中国知网(www.cnki.net)为数据源,基于文献计量可视化软件VOS viewer对2011年以来与微塑料生物毒性相关的文献进行文章产生趋势分析、研究作者分析、期刊和引文分析和关键词聚类分析。结果表明,关于微塑料生物毒性的文章年发表数量呈指数增长;全球范围内中国学者发表文章总数和被引量均位居世界前列;《Science of the Total Environment》《Journal of Hazardous Materials》《Environmental Pollution》《Environmental Science & Technology》等期刊在微塑料生物毒性研究中具有较高的影响力;微塑料生物毒性的研究热点主要集中在“微塑料生物毒性的表现”“微塑料生物毒性的来源”“微塑料与其他有害物质的联合生物毒性”和“微塑料的摄入途径”这四个方面。未来微塑料生物毒性研究需要将建立微塑料的快速检测技术、明确不同暴露途径下微塑料吸收和转移机制及探索内源性微塑料的防治措施作为重点研发领域。
随着第二代DNA测序技术的发展,研究人员积累了大量的肠道菌群数据,研究表明肠道菌群与宿主健康状况存在密切联系,因此如何对复杂、高维的肠道菌群数据进行建模分析,是当前生物信息学研究中的重要挑战。人工智能的兴起为处理肠道菌群数据,揭示肠道菌群与宿主表型之间的复杂关系提供了可能。综述了现阶段肠道菌群与宿主表型之间的相关研究,重点介绍了常用的5种机器学习算法(线性回归、支持向量机、K-近邻、随机森林、人工神经网络)的理论原理及在相关研究中的应用,对预测宿主表型的机器学习算法选择提出了建议,并对该领域的未来发展进行了展望,以期为利用机器学习对肠道菌群宿主表型预测提供参考依据。
脂肪酶是一种常用的生物催化剂,被广泛应用于医药、食品、生物化工等领域。但游离脂肪酶稳定性差,易受所处的环境影响,重复使用性差,限制了酶催化工业的应用。针对游离脂肪酶在催化领域的不足,酶固定化技术应运而生。脂肪酶经固定后大大提高了其原有的催化活性和稳定性,利用固定化脂肪酶自身的优良性能选择性催化合成所需产物,反应条件温和、收率高、副反应少,工业应用更加广泛。综述了脂肪酶固定化及其在药物合成中的研究和应用进展,并对固定脂肪酶的前景进行了展望,以期对固定化脂肪酶在工业中的应用提供一定参考。
病毒滴度测定是生物制药行业重要的分析方法,广泛应用于病毒类生物制品的开发和生产、病毒清除灭活工艺验证、外源病毒检测等领域,以确保病毒类生物制剂的活性和有效性,以及生物制品的病毒安全性。因此,建立快速、简单且准确的病毒滴定检测方法尤为重要。总结了检测病毒滴度的传统方法、新兴以及改良方法的特点、原理及具体应用,并比较了各自的优缺点。一些新兴方法,如微滴式数字PCR、病毒定量毛细管电泳、化学发光ISH-PNA测定、激光力细胞学等改进了传统方法耗时耗力、重复性差、准确性低、结果主观性大的缺点,达到了快速、灵敏、自动化程度高、精密度高、结果更加稳健且客观的优点,但部分新方法仪器昂贵或者未广泛使用,需要根据实验目的选择合适的病毒滴定方法。
玉米是我国重要的粮食作物和饲料作物,虫害和杂草防治是我国玉米生产面临的重大瓶颈问题。转基因抗虫耐除草剂玉米的应用能够减少农药使用量,在提高玉米产量、提升玉米收获品质方面具有重要作用。自1996年国外转基因抗虫耐除草剂玉米商业化应用以来,有效控制了玉米螟和草地贪夜蛾等鳞翅目害虫的为害,降低了除草成本,经济效益、社会效益和生态效益十分显著。对近10年来全球和我国转基因抗虫耐除草剂玉米的产业化发展现状进行了综述,分析了我国转基因抗虫耐除草剂玉米产业化面临的机遇与挑战,并为加快推进我国转基因玉米产业化应用提供了建议。
病毒样颗粒(virus-like particles,VLPs) 是含有某种病毒一个或多个结构蛋白的空心颗粒形态, 结构上类似完整病毒,具有与完整病毒相似的免疫原性并通过激活抗原提呈细胞诱导免疫应答,由于不含有完整的病毒基因组,因此适合用于开发更安全、成本更低的候选疫苗。系统阐述了VLPs的分类、表征、优势及表达系统,回顾了VLPs疫苗的发展历程,并汇总了已上市的疫苗品种。同时,介绍了部分在研的预防性或治疗性VLPs疫苗,并探讨了新的开发策略,进一步拓宽了VLPs疫苗的研发领域,为未来的研究与应用提供了更广阔的前景。
铁死亡是一种铁依赖性的,以细胞内脂质活性氧堆积为特征的细胞程序性死亡方式。广泛存在于肿瘤、癌症、急性肾损伤等多种疾病当中。脊髓损伤(spinal cord injury, SCI) 是一种严重的创伤性神经系统疾病,具有高发病率、高死亡率、高致残率的特点。目前,脊髓损伤的具体发生机制及高效治疗方法仍在探索当中,这也是亟待解决的世界性难题。研究表明,脊髓损伤后调控神经细胞的程序性死亡是治疗SCI的重点。然而,对于铁死亡参与脊髓损伤的分子生物学机制尚缺乏系统和深入的认识。收集和整理了近几年国内外有关脊髓损伤后铁死亡方面的相关文献,针对铁死亡参与脊髓损伤的调控机制和研究进展进行了综述,以期为治疗脊髓损伤带来新的思路。
抗生素耐药性已成为全球人类健康面临的重大威胁,医药、工业、农业生产以及生态等领域均受到多重耐药菌的严重威胁。多重耐药菌感染逐渐呈现高发病率、高死亡率的趋势。噬菌体可以特异性裂解多重耐药病原菌,然而由于噬菌体宿主谱狭窄、基因组中含有不利基因等因素的制约,当前只有部分噬菌体成功应用于防治多重耐药菌感染等领域。噬菌体基因工程具有可编辑、高效等优势,为拓宽噬菌体宿主谱、设计“安全、绿色、高效”的新型噬菌体提供了理论基础。综述了噬菌体基因工程技术的研究进展,以及噬菌体在临床抗耐药菌感染、农业生产和生态环境等方面的实际应用,为噬菌体的定向改造及其在各领域中的有效应用提供了理论支持和参考。
临床中血小板输注供需矛盾愈发尖锐,体外血小板生成的相关研究在全球受到广泛关注,主要集中于干细胞来源、细胞因子、转录因子、湍流体系等方面。由于血小板由成熟巨核细胞释放产生,提高巨核细胞分化效率,将有利于体外生产血小板体系的优化。CXCL2具有促炎、促进血管生成的作用,与心血管疾病、结肠癌进展等有关,但其在巨核细胞分化过程中的功能尚不清楚。利用脐带血CD34+细胞向巨核细胞诱导分化体系,通过慢病毒介导的基因敲降方法降低CXCL2的表达水平,并利用流式细胞术检测巨核细胞的分化效率。结果表明,CXCL2被敲降后,CD34+细胞向巨核细胞的早期增殖分化受到抑制,并且这一抑制效应在增殖分化过程中持续存在。综上,CXCL2在巨核分化过程中发挥着重要的调控作用,这一结论将对体外巨核分化及生产血小板具有一定的指导意义。
棉花是我国重要的经济作物,虫害对棉花生产造成巨大损失,而转基因技术培育抗虫棉为害虫防治提供了一个行之有效的方法。从转苏云金芽胞杆菌杀虫晶体蛋白基因棉花、RNAi转基因抗虫棉花、基因编辑创制抗虫棉花、转次生代谢物基因与棉花抗虫性的相关研究等方面对近年来转基因抗虫棉的研究进展进行了综述,以期为进一步研究转基因抗虫棉提供方向和参考。
基因编辑(gene editing)技术可以对目的基因进行定点插入、敲除和置换。基于CRISPR-Cas9的基因编辑技术是继锌指核酸酶和转录激活样效应物核酸酶之后的第3代基因编辑技术。近年来,CRISPR-Cas9系统作为研究的热点被广泛应用于医学、药学、植物学、动物学和微生物学等领域,但其在植物次生代谢物领域的应用还处于探索时期。阐述了基于CRISPR-Cas9基因编辑技术的发展历程、工作原理和几种常用的基因编辑方法及其应用实例,总结了CRISPR-Cas9技术在对植物次生代谢产物研究方面的应用。利用CRISPR-Cas9系统可对植物基因组进行定点敲除、突变和插入,以达到提高植物次生代谢物含量、改良作物品质和提高植物抗性等目的。该技术已在植物次生代谢物生物合成关键酶基因的编辑等方面显示出越来越重要的作用。
食品安全是关系国计民生的重大战略问题。农药残留(简称农残)是造成食品质量与安全问题的重要因素。食品中农药残留不仅发生率高,而且超标严重,涉及范围广,长期接触或食用含有农药残留的食品会危害人体健康。传统的农残分析技术已经很难满足多样化食品安全检测的实际需求,现代新型生物技术因特异性强、灵敏度高、简单快速等优势,在食品的农残检测中得到广泛应用和持续发展。分析了食品中农药残留及检测技术现状,综述了酶联免疫吸附测定法、荧光免疫法和生物条形码免疫法等分析技术,及电化学、光学、压电传感器等生物传感技术在食品农残检测中的应用进展,讨论了各种技术的优势和局限,以期为相关研究提供参考,从而进一步提高我国食品农残的检测效率,保障食品安全,促进我国食品行业的可持续发展。
金银花作为我国重要的中药材,具有消炎、抗菌、抗病毒、抗氧化、防癌等多种功效。随着金银花市场供需矛盾日益加剧,通过分子标记辅助选择育种方法来培育高产优质品种势在必行。通过NCBI的Blast工具扫描金银花蛋白组数据发掘花形候选基因,并执行候选基因的亲缘关系分析、结构域分析、表达模式分析、理化性质分析、蛋白质结构预测等一系列生物信息学分析。依据拟南芥调控花形的ABE类基因,通过NCBI-Blast工具扫描金银花氨基酸序列,筛选出包含MADS结构域的8个调控花形的金银花候选基因。经LjaFGD表达模式分析发现,金银花的花中GWHGAAZE016592和GWHGAAZE014905表达量显著高于其他部位,可能正向调控金银花花形。GWHGAAZE014905是一个包含MADS结构域的调控花器官发育的B类基因;GWHGAAZE016592是AP3同源基因。生物信息学分析发现,GWHGAAZE016592和GWHGAAZE014905均是稳定的亲水蛋白,属于非分泌蛋白,包括Motif1、Motif3、Motif4、Motif2、Motif6和Motif5,蛋白质三级结构模板为6byy.2.A和4ox0.2.C。GWHGAAZE014905被定位到细胞核上,而GWHGAAZE016592被定位到叶绿体上,且包含1个位于151~173 bp的跨膜螺旋区域,属于膜蛋白。研究结果为分子标记辅助选择方式培育道地高产优质金银花品种提供了基因资源和分子标记。
衰老是机体随着时间推移而发生的不可抗拒的自然变化,表现为生物体形态结构的改变和生理功能的衰退,同时伴随着多种老年性疾病的发生。亚精胺作为天然的多胺类物质,在抑制机体衰老进程中发挥着重要作用。最近的研究表明,亚精胺通过激活细胞自噬,清除受损的线粒体,干预脂肪代谢和调节细胞周期等方式,清除衰老细胞,维持组织微环境稳定,抑制衰老相关疾病的发生和进展。系统地阐述了亚精胺的体内和体外的合成过程,缓解细胞衰老的分子机制,以及在减缓机体衰老生理过程和多种衰老相关疾病中的治疗作用,以期为衰老相关疾病的转归与临床治疗提供参考。