生物技术进展 ›› 2023, Vol. 13 ›› Issue (2): 220-227.DOI: 10.19586/j.2095-2341.2022.0207
收稿日期:
2022-12-08
接受日期:
2023-02-17
出版日期:
2023-03-25
发布日期:
2023-04-07
通讯作者:
孔庆新
作者简介:
周亚梅 E-mail: chm_zhouym@163.com;
基金资助:
Yamei ZHOU(), Jia LIU, Dan LU, Qingxin KONG(
)
Received:
2022-12-08
Accepted:
2023-02-17
Online:
2023-03-25
Published:
2023-04-07
Contact:
Qingxin KONG
摘要:
脂肪酶是一种常用的生物催化剂,被广泛应用于医药、食品、生物化工等领域。但游离脂肪酶稳定性差,易受所处的环境影响,重复使用性差,限制了酶催化工业的应用。针对游离脂肪酶在催化领域的不足,酶固定化技术应运而生。脂肪酶经固定后大大提高了其原有的催化活性和稳定性,利用固定化脂肪酶自身的优良性能选择性催化合成所需产物,反应条件温和、收率高、副反应少,工业应用更加广泛。综述了脂肪酶固定化及其在药物合成中的研究和应用进展,并对固定脂肪酶的前景进行了展望,以期对固定化脂肪酶在工业中的应用提供一定参考。
中图分类号:
周亚梅, 刘佳, 陆丹, 孔庆新. 脂肪酶的固定化及其在药物合成中的应用进展[J]. 生物技术进展, 2023, 13(2): 220-227.
Yamei ZHOU, Jia LIU, Dan LU, Qingxin KONG. Progress on Lipase Immobilization and its Application in Pharmaceutical Synthesis[J]. Current Biotechnology, 2023, 13(2): 220-227.
1 | NELSON J M, GRIFFIN E G. Adsorption of invertase[J]. J. Am. Chem. Soc., 1916, 38(5): 1109-1115. |
2 | 路雪纯,辛嘉英,张帅,等.脂肪酶固定化及其在食品领域中应用的研究进展[J]. 食品工业科技, 2021, 42(17): 423-431. |
3 | WU H, MU W M. Application prospects and opportunities of inorganic nanomaterials for enzyme immobilization in the food-processing industry[J/OL]. Curr. Opin. Food. Sci., 2022, 47: 100909[2023-01-26]. . |
4 | MOGUEI M R S, HABIBI Z, SHAHEDI M, et al.. Immobilization of Thermomyces lanuginosus lipase through isocyanide-based multi component reaction on multi-walled carbon nanotube: application for kinetic resolution of rac-ibuprofen[J/OL]. Biotechnol. Rep., 2022, 35: e00759[2023-01-26]. . |
5 | 张亚格,庞雨,张维,等.脂肪酶研发态势的全球专利分析[J].生物技术进展, 2021, 11(6): 749-757. |
6 | SING N, DHANYA B S, VERMA M L. Nano-immobilized biocatalysts and their potential biotechnological applications in bioenergy production[J]. Mater. Sci. Energy Technol., 2020, 3: 808-824. |
7 | BIJOY G, RAJEEV R, BENNY L, et al.. Enzyme immobilization on biomass-derived carbon materials as a sustainable approach towards environmental applications[J/OL]. Chemosphere, 2022, 307: 135759[2022-11-26]. j.chemosphere.2022. 135759. |
8 | 熊小龙,杜鹏飞,金鹏,等.脂肪酶催化药物合成的研究进展[J].化学与生物工程, 2010, 27(8): 1-8. |
9 | 刘茹,焦成瑾,杨玲娟,等.酶固定化研究进展[J].食品安全质量检测学报, 2021, 12(5): 1861-1869. |
10 | 侯超,张申平,马跃龙.乳糖酶固定化研究进展[J].食品安全质量检测学报, 2022, 13(19): 6346-6353. |
11 | CAVALCANTIA M S, ALVES L B, DUARTE A, et al.. Immobilization of Thermomyces lanuginosus lipase via ionic adsorption on superparamagnetic iron oxide nanoparticles: facile synthesis and improved catalytic performance[J]. Chem. Eng. J., 2022, 431(2): 134128-134141. |
12 | YAO L W, MUBARAK N M, DEHGHANI M H, et al.. Insight into immobilization efficiency of lipase enzyme as a biocatalyst on the graphene oxide for adsorption of Azo dyes from industrial wastewater effluent[J/OL]. J. Mol. Liq., 2022, 354: 118849[2022-11-26]. . |
13 | CAO Y P, ZHI G Y, ZHANG D H, et al.. Biosynthesis of benzyl cinnamate using an efficient immobilized lipase entrapped in nano-molecular cages[J/OL]. Food Chem., 2021, 364: 130428[2022-01-26]. . |
14 | SANTOS L A, ALNOCH R C, KRIEGER N. Immobilization of Pseudomonas fluorescens lipase on chitosan crosslinked with polyaldehyde starch for kinetic resolution of sec-alcohols[J]. Proc. Biochem., 2022, 122(2): 238-247. |
15 | BINHAYEEDING N, YUNU T, SANGKHARAK K, et al.. Immobilisation of Candida rugosa lipase on polyhydroxybutyrate via a combination of adsorption and cross-linking agents to enhance acylglycerol production[J]. Proc. Biochem., 2020, 95: 174-185. |
16 | GONCALVES G R F, GANDOLFI O R R, VELOSO C M, et al.. Immobilization of porcine pancreatic lipase on activated carbon by adsorption and covalent bonding and its application in the synthesis of butyl butyrate[J]. Proc. Biochem., 2021, 111(2): 114-123. |
17 | SUN B Z, CHEN J, ZHANG P L, et al.. Enhanced MOF-immobilized lipase CAL-A with polyethylene glycol for efficient stereoselective hydrolysis of aromatic acid esters[J/OL]. Biochem. Eng. J., 2022, 189: 108707[2022-11-26]. . |
18 | MOHAMMADI N S, KHIABANI M S, GHANBARZADEH B, et al.. Improvement of lipase biochemical properties via a two-step immobilization method: adsorption onto silicon dioxide nanoparticles and entrapment in a polyvinyl alcohol/alginate hydrogel[J]. J. Biotechnol., 2020, 323: 189-202. |
19 | 余冲,孙秀丽,王东旭,等.酶固定化载体及固定化方法最新研究进展[J]. 广东化工, 2021, 48(2): 60-62. |
20 | 李丽娟,夏文静,马贵平.碳纳米管固定化纤维素酶的最佳工艺研究[J]. 生物技术进展, 2020, 10(4): 426-431. |
21 | 周亚梅,孔祥正,韩慧,等.聚脲多孔材料的简单制备及在酶固定和手性拆分中的应用[J].高等学校化学学报, 2017, 38(3): 495-502. |
22 | HAN H, ZHOU Y M, KONG X Z, et al.. Immobilization of lipase from Pseudomonas fluorescens on porous polyurea and its application in kinetic resolution of racemic 1-phenylethanol[J]. ACS Appl. Mater. Interfaces, 2016, 8(39): 25714-25724. |
23 | SHEN F, ARSHI S, XIAO X X, et al.. One-step electrochemical approach of enzyme immobilization for bioelectrochemical applications[J/OL]. Synthetic Metals., 2022, 291: 117205[2022-11-26]. . |
24 | ADAMS S, BRESLOFF P, MASON C. Pharmacological differences between the optical isomers of ibuprofen: evidence for metabolic inversion of the (-)-isomer[J]. J. Pharm. Pharmacol., 1976, 28(3): 256-257. |
25 | MOGUEI M R S, HABIBI Z, SHAHEDI M, et al.. Immobilization of Thermomyces lanuginosus lipase through isocyanide-based multi component reaction on multi-walled carbon nanotube: application for kinetic resolution of rac-ibuprofen[J/OL]. Biotechnol. Rep., 2022, 35: e00759[2022-11-26]. . |
26 | YUAN X, WANG L J, LIU G Y, et al..Resolution of (R,S)‐ibuprofen catalyzed by immobilized Novozym40086 in organic phase. Chirality, 2019, 31(6): 445-456. |
27 | 黄卓楠,李娜,尚雁,等. SBA-15固定化脂肪酶催化拆分萘普生甲酯水解反应[J].化学通报, 2011, 74(1):61-66. |
28 | 张领兵,张东旭,欧亮,等.R型酮咯酸的制备方法及其应用与流程: 中国, 202211032611[P]. 2022-08-26. |
29 | SHINDE S D, YADAV G D. Insight into microwave assisted immobilized Candida antarctica lipase B catalyzed kinetic resolution of RS-(±)-ketorolac [J]. Proc. Biochem., 2015, 50(2): 230-236. |
30 | 唐慧.脂肪酶/硫酸氧钒动态动力学拆分制备西汀类药物手性中间体研究[D].青岛:青岛科技大学, 2021. |
31 | DULEBA J, SIODMIAK T, MARSZALL M P. The influence of substrate systems on the enantioselective and lipolytic activity of immobilized amano PS from Burkholderia cepacia lipase (APS-BCL) [J]. Proc. Biochem., 2022, 120: 126-137. |
32 | BHUSHAN I, PARSHAD R, QAZI G N, et al.. Lipase enzyme immobilization on synthetic beaded macroporous copolymers for kinetic resolution of chiral drugs intermediates[J]. Proc. Biochem., 2008, 43(4): 321-330. |
33 | LU Y L, ZHAN R, CHEN X L, et al.. The optimized biocatalytic synthesis of (S)‐methyl 2‐chlorobutanoate by Acinetobacter sp. lipase[J]. Chirality, 2022, 34(8): 1228-1238. |
34 | EI-BEHAIRY M F, SUNDBY E. Synthesis of the antiepileptic (R)-stiripentol by a combination of lipase catalyzed resolution and alkene metathesis[J]. Tetrahedron: Asymmetry, 2013, 24(5-6): 285-289. |
35 | CIPOLATTIi E P, VALERIO A, HENRIQUES R O, et al.. Production of new nanobiocatalysts via immobilization of lipase B from C. antarctica on polyurethane nanosupports for application on food and pharmaceutical industries[J]. Int. J. Biol. Macromol., 2020, 165: 2957-2963. |
36 | 江笔辉.酶催化酯交换动力学拆分卤代扁桃酸对映体的研究[D].湖南岳阳: 湖南理工学院, 2022. |
37 | LI Y Y, WANG A, SHEN Y Q, et al.. Convenient enzymatic resolution of cis-6-benzyltetrahydro-1H-pyrrolo[3,4-b]pyridine-5,7(6H,7aH)-dione using lipase to prepare the intermediate of moxifloxacin[J]. J. Mol. Catal B: Enzym., 2014, 110: 178-183. |
[1] | 陈熙, 黄火清, 柏映国, 王苑, 夏呈强, 罗会颖, 姚斌, 涂涛, 刘晓青. 4-草酰巴豆酸互变异构酶催化合成肉桂醛的条件优化及其应用潜力分析[J]. 生物技术进展, 2025, 15(2): 296-304. |
[2] | 程歆然, 宗卫勇, 窦文芳. 基于固定化酶法合成肉桂醇糖基化衍生物的研究[J]. 生物技术进展, 2025, 15(1): 110-118. |
[3] | 仲晨, 赵彬旭, 刘梅, 刘天红, 王颖. 酶固定化技术及其在食品工业的应用进展[J]. 生物技术进展, 2024, 14(4): 537-544. |
[4] | 李薇, 石爱民, 焦博, 王强. 乙酰化花生球蛋白载酶颗粒的制备及表征[J]. 生物技术进展, 2023, 13(5): 771-778. |
[5] | 谭琳, NWE Ni Win Htet, 陈偿, PAN Zhiqiang. 新喀里多尼亚弧菌CGJ02-2中四氢嘧啶合成基因簇ectABC的克隆及其功能鉴定[J]. 生物技术进展, 2022, 12(6): 915-921. |
[6] | 吕海超, 贾哲康, 张文, 蒋丽雯, 晁玉文, 窦文芳. 尿苷二磷酸糖固定化酶合成法研究[J]. 生物技术进展, 2022, 12(2): 270-280. |
[7] | 张亚格, 庞雨, 张维, 周正富. 脂肪酶研发态势的全球专利分析[J]. 生物技术进展, 2021, 11(6): 749-757. |
[8] | 王仙霞,,武利庆,杨彬,张宁,苏萍,杨屹. 蛋白质活性计量技术研究进展[J]. 生物技术进展, 2020, 10(6): 607-612. |
[9] | 李丽娟,夏文静,马贵平. 碳纳米管固定化纤维素酶的最佳工艺研究[J]. 生物技术进展, 2020, 10(4): 426-431. |
[10] | 黄圣博,解建华,甄帅,冯飞,金良,张蕾. 基于钙基催化剂的生物质焦油催化裂解试验[J]. 生物技术进展, 2020, 10(3): 299-303. |
[11] | 杜梦潭,刘兴健,胡小元,张志芳,李轶女. 腺相关病毒的生产方式及其在基因治疗中的应用[J]. 生物技术进展, 2019, 9(4): 326-331. |
[12] | 王宇洲,马锐,向杰,陈敬师,李世贵,龚明波,顾金刚. Trichoderma lentiforme ACCC30425脂肪酶基因的原核表达及其酶学性质的初步研究[J]. 生物技术进展, 2018, 8(6): 530-536. |
[13] | 秦伟彤,田健,伍宁丰. 全细胞生物传感器的设计及其在环境监测中的应用[J]. 生物技术进展, 2018, 8(5): 369-375. |
[14] | 陈静,冷鹃,杨喜爱,廖丽萍,肖爱平,刘亮亮. 磁性纳米粒子固定化酶技术研究进展[J]. 生物技术进展, 2017, 7(4): 284-289. |
[15] | 王凯,刘洪国,姜昆,闫培生. 产脂肪酶深海细菌的筛选鉴定及酶学性质研究[J]. 生物技术进展, 2015, 5(3): 241-245. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||