生物技术进展 ›› 2023, Vol. 13 ›› Issue (2): 210-219.DOI: 10.19586/j.2095-2341.2022.0131
邱思元(
), 徐晶雪(
), 段育阳, 赵金玉, 赵文婧, 张莉欣, 任国领
收稿日期:2022-07-12
接受日期:2022-11-17
出版日期:2023-03-25
发布日期:2023-04-07
通讯作者:
徐晶雪
作者简介:邱思元 E-mail:1178735617@qq.com;
基金资助:
Siyuan QIU(
), Jingxue XU(
), Yuyang DUAN, Jinyu ZHAO, Wenjing ZHAO, Lixin ZHANG, Guoling REN
Received:2022-07-12
Accepted:2022-11-17
Online:2023-03-25
Published:2023-04-07
Contact:
Jingxue XU
摘要:
甘露糖赤藓糖醇脂(mannosylerythritol lipids, MELs)是一种生物表面活性剂,除具有可降解、毒性低、生物兼容性好等优点,还因其特有的代谢、合成途径与结构特性,而具有基因转染、广谱抗菌、皮肤修复等多种功能。MELs在医疗、日化、食品、农业、生态修复等各领域应用前景巨大,被公认为是现今最有潜力的生物表面活性剂。然而,不同种属所生产的MELs之间结构差异性大且生产方式较落后,合成与作用机制尚不清晰,因而无法实现规模商业化生产。从结构特性、生产纯化、应用途径等方面重点阐述了MELs相关研究进展,以期阐明其结构与功能的多样性,为实现靶向MELs的定制生产,降低生产成本,加快实现其规模化应用提供参考。
中图分类号:
邱思元, 徐晶雪, 段育阳, 赵金玉, 赵文婧, 张莉欣, 任国领. 甘露糖赤藓糖醇脂生产及应用研究进展[J]. 生物技术进展, 2023, 13(2): 210-219.
Siyuan QIU, Jingxue XU, Yuyang DUAN, Jinyu ZHAO, Wenjing ZHAO, Lixin ZHANG, Guoling REN. Research Progress on Production and Application of Mannosylerythritol Lipids[J]. Current Biotechnology, 2023, 13(2): 210-219.
图2 甘露糖基赤藓糖醇脂的合成途径注:meso-Erythritol—赤藓醇;Emt1—糖基转移酶;Mac1、Mac2—酰基转移酶;Mat1—乙酰基转移酶;n=6或8。ME—甘露糖基赤藓糖醇;MEL-D—脱乙酰化甘露糖基赤藓糖醇脂质;MEL-C—4′-乙酰化甘露糖基赤藓糖醇脂质[9]。
Fig. 2 Lipid synthesis pathway of mannosyl erythritol
| 菌株种类 | 主产类型 | 参考文献 |
|---|---|---|
| P. antarctica | MEL-A | [ |
| P. churashimeensis | MEL-A | [ |
| P. fusiformata | MEL-A | [ |
| P. parantarctica | MEL-A | [ |
| P. aphids | MEL-A | [ |
| P. rugulosa | MEL-A | [ |
| 南极假单胞杆菌 | MEL-A | [ |
| P. crassa | MEL-A,-B | [ |
| P. tsukubaensis | MEL-B | [ |
| P. hubeiensis | MEL-C | [ |
| P. graminicola | MEL-C | [ |
| P. siamensis | MEL-C | [ |
| P. shanxiensis | MEL-C | [ |
| 湖北锥菌SY62 | MEL-C | [ |
| P. antractia PYCC 5048 | MELs | [ |
| P. aphidis PYCC 5535 | MELs | [ |
| P. antarctious | MEL-C,-D | [ |
| Ustilago scitaminee | MEL-A,-B | [ |
| Ustilago maydis | MEL-A,-B,-C | [ |
| Uredo cynodontis | MEL-C | [ |
| P. siamensis CBS 9906 | MEL-C | [ |
表1 常见的MELs生物来源及所产类型
Table 1 Biological sources and types of common MELs
| 菌株种类 | 主产类型 | 参考文献 |
|---|---|---|
| P. antarctica | MEL-A | [ |
| P. churashimeensis | MEL-A | [ |
| P. fusiformata | MEL-A | [ |
| P. parantarctica | MEL-A | [ |
| P. aphids | MEL-A | [ |
| P. rugulosa | MEL-A | [ |
| 南极假单胞杆菌 | MEL-A | [ |
| P. crassa | MEL-A,-B | [ |
| P. tsukubaensis | MEL-B | [ |
| P. hubeiensis | MEL-C | [ |
| P. graminicola | MEL-C | [ |
| P. siamensis | MEL-C | [ |
| P. shanxiensis | MEL-C | [ |
| 湖北锥菌SY62 | MEL-C | [ |
| P. antractia PYCC 5048 | MELs | [ |
| P. aphidis PYCC 5535 | MELs | [ |
| P. antarctious | MEL-C,-D | [ |
| Ustilago scitaminee | MEL-A,-B | [ |
| Ustilago maydis | MEL-A,-B,-C | [ |
| Uredo cynodontis | MEL-C | [ |
| P. siamensis CBS 9906 | MEL-C | [ |
图3 MEL生产的时间过程和干燥细胞重量[19]注:Batch—分批补料培养;Fed-(a)—增添大豆油;Fed-(b)—增添大豆油与酵母提取物;Fed-(c)—增添大豆油、酵母提取物和葡萄糖。
Fig. 3 Time course of MEL production and dried cell weight [19]
| 1 | LEU J Y, YEE J, TU C S, et al.. Microstructure and molecular vibration of mannosylerythritol lipids from Pseudozyma yeast strains[J/OL]. Chem. Physics Lipids, 2020, 232: 104969[2022-11-17]. . |
| 2 | TOMOTAKE M, YUKI O, MASAKO T, et al.. Isolation of Pseudozyma churashimaensis sp. nov.,a novel ustilaginomycetous yeast species as a producer of glycolipid biosurfactants, mannosylerythritol lipids[J]. J. Biosci. Bioengin., 2011, 112: 137-144. |
| 3 | AZUSA S, YU U, HIDEAKI K, et al.. Identification of the gene PtMAT1 encoding acetyltransferase from the diastereomer type of mannosylerythritol lipid-B producer Pseudozyma tsukubaensis [J]. J. Biosci. Bioengin., 2018, 126: 676-681. |
| 4 | KONDO T, YASUI C, BANNO T, et al.. Self‐assembling properties and recovery effects on damaged skin cells of chemically synthesized mannosylerythritol lipids[J/OL]. ChemBioChem, 2022, 23(2): e202100631[2021-11-16]. . |
| 5 | 范琳琳.甘露糖赤藓糖醇脂的生物合成及性质与应用研究[D].杭州:浙江大学,2015. |
| 6 | FABIENNE B, THORSTEN S, UWE L, et al.. Engineering ustilago maydis for production of tailor-made mannosylerythritol lipids[J/OL]. Metabolic Engin. Commun., 2021, 12: e00165[2022-11-17]. . |
| 7 | TOKUMA F, TAKASHI Y, TOMOHIRO L, et al.. The diastereomers of mannosylerythritol lipids have different interfacial properties and aqueous phase behavior, reflecting the erythritol configuration[J]. Carbohydr. Res., 2012, 351: 81-86. |
| 8 | CLOSES H, LINNE U, SCHERER M,et al.. Identification of a gene cluster for biosynthesis of mannosylerythritol lipids in the basidiomycetous fungus Ustilago maydis Appl.[J]. Environ. Microbiol., 2006, 72: 5469-5477. |
| 9 | MASAAKI K, MOTOKI M. Selective production of deacetylated mannosylerythritol lipid, MEL-D, by acetyltransferase disruption mutant of Pseudozyma hubeiensis [J]. J. Biosci. Bioengin., 2018, 125: 105-110. |
| 10 | 孟令一.一株产糖脂类表面活性剂菌株的筛选、纯化及其产物分析[D].长春:东北师范大学,2015. |
| 11 | 段正巧. Pseudozyma aphidis CNm2012代谢产物甘露糖赤藓糖醇脂(MELs)的抗菌活性检测[D].重庆:西南大学,2015. |
| 12 | TOMOTAKE M, MASAAKI K, TOKUMA F, et al.. Microbial conversion of glycerol into glycolipid biosurfactants, mannosylerythritol lipids, by a basidiomycete yeast, Pseudozyma antarctica JCM 10317[J]. J Biosci. Bioengin., 2007(1):78-81. |
| 13 | CRISTIANO J D, LIDIANE M D, SILVANA A, et al.. A novel approach for the production and purification of mannosylerythritol lipids (MEL) by Pseudozyma tsukubaensis using cassava wastewater as substrate[J]. Separ. Purif. Technol., 2017,180(8):157-167. |
| 14 | SHEN L, ZHUB J, LUB J, et al.. Isolation and purification of biosurfactant mannosylerythritol lipids from fermentation broth with methanol/water/n-hexane[J]. Sep. Purif. Technol., 2019, 219: 1-8. |
| 15 | 薛婷婷,付瑞敏,谷亚楠,等.一株产甘露糖赤藓糖醇脂菌株的筛选及其产物分析[J].微生物学通报,2016,43:1210-1217. |
| 16 | TOKUMA F, MAYO K, TOMOTAKE M, et al.. A basidiomycetous yeast, Pseudozyma crassa, produces novel diastereomers of conventional mannosylerythritol lipids as glycolipid biosurfactants[J]. Carbohydr. Res., 2008, 343: 2947-2955. |
| 17 | 华兆哲,陈坚,朱文昌,等.新型生物表面活性剂甘露糖赤藓糖醇脂(MEL)的分离与表面性质研究[J].天然产物研究与开发,1999(3):11-16. |
| 18 | NASCIMENTO M F, BARREIROS R, OLIVEIRA A C, et al.. Moesziomyces spp. cultivation using cheese whey: new yeast extract-free media, β-galactosidase biosynthesis and mannosylerythritol lipids production[J]. Biomass Conver. Biorefinery, 2022, 6: 1-14. |
| 19 | SAIKA A, FUKUOKA T, KOIKE H.A putative transporter gene PtMMF1-deleted strain produces mono-acylated mannosylerythritol lipids in Pseudozyma tsukubaensis [J]. Appl. Microbiol. Biotechnol., 2020, 104: 10105-10117. |
| 20 | TRAN Q, RYUA G, CHOI J. Enhanced production of biosurfactants through genetic engineering of Pseudozyma sp. SY16[J].Korean J. Chem. Eng.,2022, 39(4): 997-1003. |
| 21 | MASAAKI K, TOMOTAKE M, TOKUMA F, et al.. Efficient production of mannosylerythritol lipids with high hydrophilicity by Pseudozyma hubeiensis KM-59[J]. Appl. Microbiol. Biotechnol., 2008, 78: 37-46. |
| 22 | RAU U, NGUYEN L A, ROEPER H, et al.. Fed-batch bioreactor production of mannosylerythritol lipids secreted by Pseudozyma aphidis [J]. Appl. Microbiol. Biotechnol., 2005, 68: 607-613. |
| 23 | YU G, WANG X, ZHANG C, et al.. Efficient production of mannosylerythritol lipids by a marine yeast Moesziomyces aphidis XM01 and their application as self-assembly nanomicelles[J]. Marine Life Sci. Technol., 2022, 4(3): 373-383. |
| 24 | FAN L, CHEN Q, YASHENG M, et al.. Stable vesicle self-assembled from phospholipid and mannosylerythritol lipid and its application in encapsulating anthocyanins[J/OL]. Food Chem., 2021, 344: 128649[2022-11-17]. . |
| 25 | KITAMOTO D, ISODA H, NAKAHARA T. Functions and potential applications of glycolipid biosurfactants-from energy-saving materials to gene delivery carriers[J]. J. Biosci. Bioengin., 2002, 94: 187-201. |
| 26 | INOH Y, KITAMOTO D, HIRASHIMA N, et al.. Biosurfactants of MEL-A increase gene transfection mediated by cationic liposomes[J]. Biochem. Biophys. Res. Commun., 2001, 289: 57-61. |
| 27 | HANAA A H, MOHD A A. Biosurfactant as a vehicle for targeted antitumor and anticancer drug delivery[J]. Green Sustain. Process Chem. Environ. Engin. Sci., 2022, 16: 676-618. |
| 28 | TOMOTAKE M, MASARU K, SHUHEI Y, et al.. Glycolipid biosurfactants, Mannosy lerythritol lipids, repair the damaged hair[J]. J. Oleo Sci., 2010, 61: 407-412. |
| 29 | SHUHEI Y, TOMOTAKE M, TOKUMA F, et al.. The moisturizing effects of glycolipid biosurfactants,mannosylerythritol lipids, on human skin[J]. J. Oleo. Sci., 2012, 216: 676-618. |
| 30 | JING C, GUO J, LI Z, et al.. Screening and research on skin barrier damage protective efficacy of different mannosylerythritol lipids[J/OL].Molecules,2022,27:4648[2022-11-17]. . |
| 31 | LIU X, ZHANG L, PANG X, et al.. Synergistic antibacterial effect and mechanism of high hydrostatic pressure and mannosylerythritol lipid-A on Listeria monocytogenes [J/OL]. Food Control., 2022, 135: 108797[2022-11-17]. . |
| 32 | SHU Q, WEI T, LIU X, et al.. The dough-strengthening and spore-sterilizing effects of mannosylerythritol lipid-A in frozen dough and its application in bread making [J/OL]. Food Chem., 2022, 369: 131011[2022-11-17]. . |
| 33 | TOKUMA F, SHIGENOBU Y, JUNICHI N, et al.. Application of yeast glycolipid biosurfactant, mannosylerythritol lipid, as agrospreaders[J]. J. Oleo Sci., 2015, 64: 689-695. |
| 34 | TAHIR Z, NAZIR M S, ASLAM A A, et al.. Active metabolites and biosurfactants for utilization in environmental remediation and eco-restoration of polluted soils[J]. Biosurfact. Bioremed. Pollut. Environ., 2021(7):31-51. |
| 35 | RAJASIMMAN M, SUGANYA A, MANIVANNAN P, et al.. Utilization of agroindustrial wastes with a high content of protein, carbohydrates, and fatty acid used for mass production of biosurfactant[J]. Chem. Environ. Engin. Sci., 2021, 6: 127-146. |
| 36 | PHILLIP J, ANNA T, VICTOR S, et al.. Effect of synthetic surfactants on the environment and the potential for substitution by biosurfactants[J]. Adv. Colloid Interface Sci., 2021, 288: 676-618. |
| 37 | BELHAJ A, ELRAIES F. The effect of surfactant concentration, salinity, temperature, and pH on surfactant adsorption for chemical enhanced oil recovery: a review[J]. Petrol Explor. Prod. Technol., 2020, 10: 125-137. |
| 38 | HANS-TOBIAS D, UWE L, XIULAN X, et al.. Elucdation of substrate specificities of decorating enzymes involved in mannosylerythritol lipid production by cross-species complementation[J]. Fungal Genet. Biol., 2019, 130: 91-97. |
| 39 | CRISTIANO J DE A, ANA L S C, PAULO E F, et al.. Mannosylerythritol lipids: production, downstream processing, and potential applications[J/OL]. Curr. Opin. Biotechnol., 2022, 77:102769[2022-11-17].. |
| 40 | FUKUOKA T, YANAGIHARA T, IMURA T, et al.. The diastereomers of mannosylerythritol lipids have different interfacial properties and aqueous phase behavior, reflecting the erythritol configuration[J]. Carbohydr. Res., 2012, 351: 81-86. |
| [1] | 舒玲, 包明威. 胃肠道在肥胖相关性高血压中的作用及研究进展[J]. 生物技术进展, 2025, 15(3): 426-431. |
| [2] | 邱思元, 徐晶雪, 张奕婷, 孙盛阳, 盛冬雪, 高佳欣, 曲丽娜. 生物压裂液驱提页岩油内源复合菌群的筛选与条件优化[J]. 生物技术进展, 2025, 15(2): 305-313. |
| [3] | 武小琪, 宫文静, 李国玉, 李昂, 王继华, 崔迪. 微生物发酵中药的盲区与挑战:从菌种选择到质量控制[J]. 生物技术进展, 2025, 15(2): 201-211. |
| [4] | 吴焕振, 杨野, 崔秀明, 刘源. 农业生物防治技术的现状及改进策略[J]. 生物技术进展, 2024, 14(5): 697-711. |
| [5] | 吴必聪, 焦博, 张雨, 郭鑫, 张誉, 罗晓红, 代蕾, 王强. 料液比对搅拌型UHT核桃酸奶品质特性的影响[J]. 生物技术进展, 2024, 14(4): 640-648. |
| [6] | 徐畅, 刘天一, 刘文佳, 张俐敏, 莫继先. 微生物胞外多糖的来源、生物合成及功能研究进展[J]. 生物技术进展, 2024, 14(3): 368-376. |
| [7] | 孙佳琪, 郭嘉, 张闯, 柳青, 王梓钰, 夏涵超, 钱步轩, 赵方方, 王棋, 刘剑锋, 刘相国. 亚磷酸脱氢酶在基因工程改造微生物和植物中的研究进展[J]. 生物技术进展, 2024, 14(2): 173-181. |
| [8] | 马云鹏, 朱静, 崔兴华. 基于机器学习的微生物溶解有机碳含量估测[J]. 生物技术进展, 2023, 13(4): 645-653. |
| [9] | 郝捷, 季嫱, 李力群, 郑超, 吴娜, 吴晗, 李选文, 孙志康. 生物酶和微生物技术改善烟叶香气的研究进展[J]. 生物技术进展, 2022, 12(6): 817-824. |
| [10] | 刘培敏, 罗金萍, 高权新. 水产养殖环境微生物研究进展[J]. 生物技术进展, 2022, 12(5): 690-695. |
| [11] | 李力群, 孙志康, 郝捷, 季嫱, 李选文, 吴晗, 吴娜, 郑超, 杨婧. 果胶酶生产及工业应用进展[J]. 生物技术进展, 2022, 12(4): 549-558. |
| [12] | 李伟, 王冲, 刘嗣嘉, 杨敏一, 张云平. 宏基因组学技术在痤疮研究中的应用进展[J]. 生物技术进展, 2021, 11(6): 694-699. |
| [13] | 赵冬雪,刘璐,穆迎春,韩刚,张洪玉,房洪博,阮志勇4,宋金龙. 磺胺甲恶唑高效降解菌群的多样性分析和降解微生物的分离表征[J]. 生物技术进展, 2021, 11(2): 196-203. |
| [14] | 玄琦月,韩雪,付英梅,. 肺外结核病微生物学诊断方法的研究和应用进展[J]. 生物技术进展, 2021, 11(1): 47-53. |
| [15] | 张兆昆,,周文学,李永丽,,胡建华,,刘占英,. 核黄素发酵菌种改造研究进展[J]. 生物技术进展, 2021, 11(1): 54-60. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||