生物技术进展 ›› 2025, Vol. 15 ›› Issue (5): 764-772.DOI: 10.19586/j.2095-2341.2024.0185
吕明杰1,2(
), 贾贵瑛2, 李欣然1, 郭亚宁3, 李凯1, 陈锐2, 李亮1(
)
收稿日期:2024-11-25
接受日期:2025-07-30
出版日期:2025-09-25
发布日期:2025-11-11
通讯作者:
李亮
作者简介:吕明杰 E-mail: lvmingjie_good@163.com;
基金资助:
Mingjie LYU1,2(
), Guiying JIA2, Xinran LI1, Yaning GUO3, Kai LI1, Rui CHEN2, Liang LI1(
)
Received:2024-11-25
Accepted:2025-07-30
Online:2025-09-25
Published:2025-11-11
Contact:
Liang LI
摘要:
作物实质性派生品种(essential derived variety,EDV)制度是一种旨在保护原始育种者权益、激励育种创新的知识产权保护机制。随着现代生物技术与育种技术的进步,原始品种经简单修饰即可衍生出新品种,导致原始创新保护面临挑战。为了平衡原始品种与派生品种育种者的利益,国际植物新品种保护联盟(International Union for the Protection of New Varieties of Plants,UPOV)于1991年正式确立EDV概念。系统梳理了EDV制度的起源与定义,解析了EDV判定的原则与方法,并对比分析了国内外EDV保护制度的现状及发展趋势,以期为育种知识产权的保护提供参考。
中图分类号:
吕明杰, 贾贵瑛, 李欣然, 郭亚宁, 李凯, 陈锐, 李亮. 作物实质性派生品种制度与判定方法研究进展[J]. 生物技术进展, 2025, 15(5): 764-772.
Mingjie LYU, Guiying JIA, Xinran LI, Yaning GUO, Kai LI, Rui CHEN, Liang LI. Research Progress on Crop Substantive Derived Variety System and Judgment Method[J]. Current Biotechnology, 2025, 15(5): 764-772.
| [1] | 周绪晨,宋敏.中国植物新品种保护事业国际化发展研究[J].中国软科学,2019(1):20-30. |
| ZHOU X C, SONG M. Research on the internationalization of the development of new plant varieties protection in China[J]. China Soft Sci., 2019(1): 20-30. | |
| [2] | Explanatory Notes on Essentially Derived Varieties under the 1991 Act of the UPOV Convention[EB/OL]. [2024-06-20]. . |
| [3] | 蒋洪杰,欧阳曦.我国四大作物试行实质性派生品种制度[J].乡村科技,2023(9):3. |
| JIANG H J, OUYANG X. Trial implementation of substantive derivative variety system for four major crops in China[J]. Rural Sci. Technol., 2023(9): 3. | |
| [4] | 齐晓,贠旭疆,洪军,等.我国草品种区域试验工作进展[J].草地学报,2013,21(6):1033-1042. |
| QI X, YUAN X J, HONG J, et al.. Progress of herbage cultivar regional test program in China[J]. Acta Agrestia Sin., 2013, 21(6): 1033-1042. | |
| [5] | 朱岩,周绪晨,宋敏.中国农业植物新品种保护进展及影响研究[J].农业科技管理,2017,36(6):1-7. |
| ZHU Y, ZHOU X C, SONG M. Research on progress and influence of plant variety protection on agriculture of China[J]. Manag. Agric. Sci. Technol., 2017, 36(6): 1-7. | |
| [6] | WANG L, ZHENG Y, DUAN L, et al.. Artificial selection trend of wheat varieties released in Huang-Huai-Hai Region in China evaluated using DUS testing characteristics[J/OL]. Front. Plant Sci., 2022, 13: 898102[2025-04-15]. . |
| [7] | LIU C G, ZHANG G Q. Genetic diversity revealed by SSR markers and temporal trends of major commercial inbred indica rice cultivars in South China in 1949-2005[J]. Acta Agron. Sin., 2010, 36(11): 1843-1852. |
| [8] | 滕海涛,吕波,赵久然,等.利用DNA指纹图谱辅助植物新品种保护的可能性[J].生物技术通报,2009,25(1):1-6. |
| TENG H T, LYU B, ZHAO J R, et al.. DNA fingerprint profile involved in plant variety protection practice[J]. Biotechnol. Bull., 2009, 25(1): 1-6. | |
| [9] | YANG C J, RUSSELL J, RAMSAY L, et al.. Overcoming barriers to the registration of new plant varieties under the DUS system[J/OL]. Commun. Biol., 2021, 4(1): 302[2025-04-15]. . |
| [10] | LIU H, RAO D, GUO T, et al.. Whole genome sequencing and morphological trait-based evaluation of UPOV option 2 for DUS testing in rice[J/OL]. Front. Genet., 2022, 13: 945015[2025-04-15]. . |
| [11] | 陈立毅,黄铄媛.论实质性派生品种之判断:从1991年UPOV公约的解释与应用谈起[J].电子知识产权,2023(11):95-105. |
| CHEN L Y, HUANG S Y. On the assessment of essentially derived varieties: starting from the interpretation and application of the 1991 UPOV convention[J]. Electron. Intellect. Prop., 2023(11): 95-105. | |
| [12] | 乐锦华,祝建波,崔百明,等.利用目的基因转化技术培育棉花抗病新品种[J].石河子大学学报(自然科学版),2002,20(3):173-178. |
| LE J H, ZHU J B, CUI B M, et al.. Breeding Fusarium wilt and Verticillium wilt of cotton-resistant strains with transgene technique[J]. J. Shihezi Univ. Nat. Sci., 2002, 20(3): 173-178. | |
| [13] | NENKO N, ILINA I, ZAPOROZHETS N, et al.. Studying of the resistance to winter stresses of grapevine varieties of different ecological and geographical origin[J/OL]. Bio. Web Conf., 2020, 25: 02015[2025-04-15]. . |
| [14] | 曾礼华,汪瀚宇,谢程程,等.玉米淀粉合成酶基因GBSS启动子的克隆与鉴定[J].植物生理学报,2015,51(9):1433-1439. |
| ZENG L H, WANG H Y, XIE C C, et al.. Clone and identification of granule-bound starch synthase gene promoter in maize[J]. Plant Physiol. J., 2015, 51(9): 1433-1439. | |
| [15] | 万志前,张媛.实质性派生品种制度的缘起、困境与因应[J].浙江农业学报,2020,32(11):2067-2076. |
| WAN Z Q, ZHANG Y. Origin, implementation difficulties and countermeasures of essential derived variety system[J]. Acta Agric. Zhejiangensis, 2020, 32(11): 2067-2076. | |
| [16] | 蒲伟军,谭冰兰,贺丹晨,等.利用重测序技术开发高粱InDel分子标记[J].生物技术进展,2023,13(5):730-741. |
| PU W J, TAN B L, HE D C, et al.. Development of InDel molecular markers in sorghum using re-sequencing technology[J]. Curr. Biotechnol., 2023, 13(5): 730-741. | |
| [17] | 张少平,张玉灿,张伟光,等.RAPD及SRAP两种分子标记技术对苦瓜杂交种纯度的鉴定分析[J].生物技术进展,2014,4(4):286-291. |
| ZHANG S P, ZHANG Y C, ZHANG W G, et al.. Purity analysis of bitter gourd hybrid seeds by RAPD and SRAP molecular marker technology[J]. Curr. Biotechnol., 2014, 4(4): 286-291. | |
| [18] | 褚云霞,陈海荣,邓姗,等.实质性派生品种鉴定方法研究进展[J].上海农业学报,2017,33(5):132-138. |
| CHU Y X, CHEN H R, DENG S, et al.. Development of the identification of essentially derived varieties[J]. Acta Agric. Shanghai, 2017, 33(5): 132-138. | |
| [19] | ROUSSELLE Y, JONES E, CHARCOSSET A, et al.. Study on essential derivation in maize: Ⅲ. selection and evaluation of a panel of single nucleotide polymorphism loci for use in European and North American germplasm[J]. Crop Sci., 2015, 55(3): 1170-1180. |
| [20] | VOSMAN B, VISSER D, VAN DER VOORT J R, et al.. The establishment of 'essential derivation' among rose varieties, using AFLP[J]. Theor. Appl. Genet., 2004, 109(8): 1718-1725. |
| [21] | 魏传正,王朦,张鹏,等.基于二代测序技术的MNP标记鉴别刺芹侧耳菌株[J].食用菌学报,2023,30(1):1-9. |
| WEI C Z, WANG M, ZHANG P, et al.. Identification of Pleurotus eryngii strains by MNP makers based on next-generation sequencing[J]. Acta Edulis Fungi, 2023, 30(1): 1-9. | |
| [22] | YUAN X, LI Z, XIONG L, et al.. Effective identification of varieties by nucleotide polymorphisms and its application for essentially derived variety identification in rice[J/OL]. BMC Bioinform., 2022, 23(1): 30[2025-04-15]. . |
| [23] | SANTHY V, MOHAPATRA T, DADLANI M, et al.. DNA markers for testing distinctness of rice (Oryza sativa L.) varieties[J]. Plant Varieties Seeds, 2000,13(3): 141-148. |
| [24] | SMULDERS M J M, ESSELINK D, VOORRIPS R E, et al.. Analysis of a database of DNA profiles of 734 hybrid tea rose varieties[J]. Acta Hortic., 2009(836): 169-175. |
| [25] | LAW J R, REEVES J C, JACKSON J, et al.. Most similar variety comparisons-a grouping tool for use in distinctness, uniformity and stability (dus) testing[J]. Acta Hortic., 2001(546): 95-100. |
| [26] | LESUR C, BECHER A, WOLFF K, et al.. DNA fingerprints for Pelargonium cultivar identification[J]. Acta Hortic., 2001(546): 325-330. |
| [27] | HECKENBERGER M, MUMINOVIĆ J, VAN DER VOORT J R, et al.. Identification of essentially derived varieties obtained from biparental crosses of homozygous lines. Ⅲ. AFLP data from maize inbreds and comparison with SSR data[J]. Mol. Breed., 2006, 17(2): 111-125. |
| [28] | 彭海.MNP等标记新方法及其在植物品种鉴定中的应用[D]. 武汉:江汉大学, 2018. |
| [29] | LI L, LI X, LIU F, et al.. Preliminary investigation of essentially derived variety of tea tree and development of SNP markers[J/OL]. Plants, 2023, 12(8): 1643[2025-04-15]. . |
| [30] | 徐云碧,王冰冰,张健,等.应用分子标记技术改进作物品种保护和监管[J].作物学报,2022,48(8):1853-1870. |
| XU Y B, WANG B B, ZHANG J, et al.. Enhancement of plant variety protection and regulation using molecular marker technology[J]. Acta Agron. Sin., 2022, 48(8): 1853-1870. | |
| [31] | 王延训,田纪春,杨明,等.高类黄酮小麦品种山农101的创制及其利用前景分析[J].中国种业,2023(4):15-17. |
| WANG Y X, TIAN J C, YANG M, et al.. Creation and utilization prospect of high flavonoids wheat variety Shannong 101[J]. China Seed Ind., 2023(4): 15-17. | |
| [32] | KORIR N K, HAN J, SHANGGUAN L, et al.. Plant variety and cultivar identification: advances and prospects[J]. Crit. Rev. Biotechnol., 2013, 33(2): 111-125. |
| [33] | YANG Y, TIAN H, YI H, et al.. LociScan, a tool for screening genetic marker combinations for plant variety discrimination[J]. Crop J., 2024, 12(2): 583-593. |
| [34] | 张鹏,管俊娇,黄清梅,等.基于SNP芯片的云南玉米自交系遗传多样性和群体遗传结构分析[J].南方农业学报,2020,51(9):2082-2089. |
| ZHANG P, GUAN J J, HUANG Q M, et al.. Genetic diversity and genetic structure of maize inbred lines from Yunnan revealed by SNP chips[J]. J. South. Agric., 2020, 51(9): 2082-2089. | |
| [35] | 胡俏强,周玲,潘玖琴,等.基于玉米50K芯片分析鲜食玉米温-热带杂种优势模式及其育种利用[J].江苏农业科学,2021,49(5):62-66. |
| HU Q Q, ZHOU L, PAN J Q, et al.. Analysis of temper-tropical heterosis model of fresh maize and its breeding utilization based on maize 50K chip[J]. Jiangsu Agric. Sci., 2021, 49(5): 62-66. | |
| [36] | HECKENBERGER M, BOHN M, FRISCH M, et al.. Identification of essentially derived varieties with molecular markers: an approach based on statistical test theory and computer simulations[J]. Theor. Appl. Genet., 2005, 111(3): 598-608. |
| [37] | NOLI E, TERIACA M S, CONTI S. Identification of a threshold level to assess essential derivation in durum wheat[J]. Mol. Breed., 2012, 29(3): 687-698. |
| [38] | BORCHERT T, KRUEGER J, HOHE A. Implementation of a model for identifying essentially derived varieties in vegetatively propagated Calluna vulgaris varieties[J/OL]. BMC Genet., 2008, 9: 56[2025-04-15]. . |
| [39] | LIN J J, KUO J, MA J, et al.. Identification of molecular markers in soybean comparing RFLP, RAPD and AFLP DNA mapping techniques[J]. Plant Mol. Biol. Report., 1996, 14(2): 156-169. |
| [40] | JONES C J, EDWARDS K J, CASTAGLIONE S, et al.. Reproducibility testing of RAPD, AFLP and SSR markers in plants by a network of European laboratories[J]. Mol. Breed., 1997, 3(5): 381-390. |
| [41] | MEUNIER J R, GRIMONT P A. Factors affecting reproducibility of random amplified polymorphic DNA fingerprinting[J]. Res. Microbiol., 1993, 144(5): 373-379. |
| [42] | PENNER G A, BUSH A, WISE R, et al.. Reproducibility of random amplified polymorphic DNA (RAPD) analysis among laboratories[J]. PCR Meth. Appl., 1993, 2(4): 341-345. |
| [43] | 崔野韩,陈如明,李昌健.美国植物新品种保护审查制度[J].世界农业,2001(9):36-38. |
| CUI Y H, CHEN R M, LI C J. Test institution of plant new varieties protection in US[J]. World Agric., 2001(9): 36-38. | |
| [44] | 陈如明,杨旭红,陈红.植物品种保护与品种审定[J].作物杂志,2005(2):33-34. |
| CHEN R M, YANG X H, CHEN H. Plant variety protection and variety approval[J]. Crops, 2005(2): 33-34. | |
| [45] | 郑勇奇,张川红,黄平,等.植物新品种保护发展现状与趋势[J].农业科技与信息(现代园林),2015(8):593-598. |
| ZHENG Y Q, ZHANG C H, HUANG P, et al.. Current status and future trends of protection of new varieties of plants[J]. Mod. Landsc. Archit., 2015(8): 593-598. | |
| [46] | 陈红,吕波,刘伟,等.基于植物新品种保护视角下的中国水稻育种现状与对策[J].福建农业学报,2011,26(2):304-308. |
| CHEN H, LYU B, LIU W, et al.. Current status and recommendations on rice breeding in China-from a viewpoint of protecting new plant varietyies[J]. Fujian J. Agric. Sci., 2011, 26(2): 304-308. | |
| [47] | 陈亮,虞富莲,姚明哲,等.国际植物新品种保护联盟茶树新品种特异性、一致性、稳定性测试指南的制订[J].中国农业科学,2008,41(8):2400-2406. |
| CHEN L, YU F L, YAO M Z, et al.. Preparation of the UPOV guidelines for the conduct of tests for distinctness, uniformity and stability: tea plant[J]. Sci. Agric. Sin., 2008, 41(8): 2400-2406. | |
| [48] | 杜淑辉,臧德奎,孙居文.我国观赏植物新品种保护与DUS测试研究进展[J].中国园林,2010,26(9):78-81. |
| DU S H, ZANG D K, SUN J W. Progress on the protection of new varieties and DUS testing of ornamental plants in China[J]. Chin. Landsc. Archit., 2010, 26(9): 78-81. | |
| [49] | 郑勇奇,张川红,于雪丹,等.植物新品种保护与测试研究[M].北京:中国农业出版社,2015. |
| [50] | 马世鹏,张云龙,段民孝,等.基于Maize6H-60K芯片精准分型的玉米DH群体遗传规律研究[J].中国农业大学学报,2022,27(11):1-12. |
| MA S P, ZHANG Y L, DUAN M X, et al.. Study on genetic rule of maize doubled haploid population based on Maize6H-60K accurate-genotyping[J]. J. China Agric. Univ., 2022, 27(11): 1-12. | |
| [51] | , 2021.玉米品种真实性鉴定SNP标记法 [S]. 北京:农业农村部,2021. |
| [52] | 张小燕,高遒竹,高向阳.特殊粒色小麦研究进展[J].粮油食品科技,2016,24(4):7-11. |
| ZHANG X Y, GAO Q Z, GAO X Y. Research progress on special color wheat[J]. Sci. Technol. Cereals Oils Foods, 2016, 24(4): 7-11. |
| [1] | 丁璇, 张祖英, 苏秀娟, 胡文冉. 通过辅助方法优化农杆菌介导的棉花胚尖遗传转化[J]. 生物技术进展, 2025, 15(3): 495-501. |
| [2] | 王智, 胡广, 付伟, 彭萱子, 张永江, 翟俊峰. 基于文献计量的转基因植物及其产品核酸检测技术发展态势分析[J]. 生物技术进展, 2025, 15(3): 476-485. |
| [3] | 高子雅, 皇甫秉欣, 李佳岢, 李昉倩, 马智昊, 庞洋, 梁晋刚, 贺晓云. 生物育种产业化风险识别及建议——基于种植者的实地调研[J]. 生物技术进展, 2025, 15(3): 456-465. |
| [4] | 海萨·艾也力汗null, 焦飞, 刘鸿, 呼德拉提·阿那斯null, 沈玉帮. 联合GWAS和转录组分析挖掘与白斑狗鱼耐高温性状关联的SNP[J]. 生物技术进展, 2025, 15(3): 432-445. |
| [5] | 邱冰月, 施家腾, 金静. siRNA基因治疗在肌腱损伤修复中的研究进展[J]. 生物技术进展, 2025, 15(3): 411-417. |
| [6] | 崔兆惠, 郭玲, 沈旭东, 林毅, 翟丽丽. 酵母表达治疗性重组蛋白的研究进展[J]. 生物技术进展, 2025, 15(3): 380-387. |
| [7] | 王彦杰, 邱波. P53基因在骨肉瘤中的作用与研究进展[J]. 生物技术进展, 2025, 15(2): 241-246. |
| [8] | 罗焱, 洪琪, 梁乐怡, 余诗玥, 陈琼霞, 韩晓芳, 镇鸿燕. WIPI2基因过表达慢病毒载体的构建及表达[J]. 生物技术进展, 2025, 15(1): 135-141. |
| [9] | 乔建, 曾帅, 张杨, 徐葛林. 重组胰蛋白酶在原代地鼠肾细胞组织分离中的应用[J]. 生物技术进展, 2025, 15(1): 152-157. |
| [10] | 张青云, 马蕾, 胥华, 靳礼安, 邹俊杰, 王宝宝, 陈全家, 徐妙云. 根系木质素含量影响玉米耐盐性的机制研究[J]. 生物技术进展, 2025, 15(1): 67-77. |
| [11] | 万令飞, 潘文婷, 雍雨婷, 李元帅, 赵悦, 阎新龙. 单细胞转录组测序技术在肝纤维化中的研究进展[J]. 生物技术进展, 2024, 14(5): 793-804. |
| [12] | 范宏博, 胡良勇, 胡松青. 幽门螺杆菌ureC和23S rDNA数字PCR检测体系的建立[J]. 生物技术进展, 2024, 14(5): 868-874. |
| [13] | 李凯, 付军, 陈锐, 陈笑芸, 李亮. 基于免扩增高通量测序的转基因定量检测方法研究[J]. 生物技术进展, 2024, 14(4): 610-617. |
| [14] | 孙卓婧, 徐道青, 唐巧玲, 王维. 韩国转基因生物安全管理与发展现状[J]. 生物技术进展, 2024, 14(3): 360-367. |
| [15] | 张佳聪, 鲁纪刚. 基于CRISPR/Cas9系统建立新吉富罗非鱼双等位基因敲除技术——以SLC24A5基因为例[J]. 生物技术进展, 2024, 14(3): 442-450. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||