Current Biotechnology ›› 2022, Vol. 12 ›› Issue (3): 387-395.DOI: 10.19586/j.2095-2341.2022.0061
• Articles • Previous Articles Next Articles
Yichao LIU(
), Chao LU, Yuhua ZHAN, Xiubin KE, Wei LU, Yongliang YAN(
)
Received:2022-04-22
Accepted:2022-05-05
Online:2022-05-25
Published:2022-05-26
Contact:
Yongliang YAN
刘一超(
), 陆超, 战嵛华, 柯秀彬, 陆伟, 燕永亮(
)
通讯作者:
燕永亮
作者简介:刘一超 E-mail:yichao.liu@kcl.ac.uk;
基金资助:CLC Number:
Yichao LIU, Chao LU, Yuhua ZHAN, Xiubin KE, Wei LU, Yongliang YAN. Expressional and Functional Characterization of the Ferric Uptake Regulator Fur in Pseudomonas stutzeri A1501[J]. Current Biotechnology, 2022, 12(3): 387-395.
刘一超, 陆超, 战嵛华, 柯秀彬, 陆伟, 燕永亮. 施氏假单胞菌A1501铁吸收调节蛋白Fur的表达特性与功能鉴定[J]. 生物技术进展, 2022, 12(3): 387-395.
| 引物名称 | 引物序列(5´→3´) | 功能 |
|---|---|---|
| furKOF1 | 5´-ATAAGCTTCTGGACACCATCTACACCCT-3´ | fur上游同源臂扩增引物,用于构建缺失突变株 |
| furKOR1 | 5´-AGCTCGAATTCGATATCCCTTTTTTATGCCGCTTT-3´ | |
| furKOF2 | 5´-AAATAAGGATCCTCTAGACTCATGTGTCGACGGT-3´ | fur下游同源臂扩增引物,用于构建缺失突变株 |
| furKOR2 | 5´-ATGCTAGCTTTTTTCATTCGGTTTCC-3´ | |
| furF | 5´-AAGCTTACCTGACCGAACAATCCCT-3´ | fur扩增引物,用于构建功能回补株 |
| furR | 5´-GGTACCGGTCGTTGGCATTGAATA-3´ | |
| PST_0819-F | 5′-ATAGCCTGCTCAATGCCCA-3′ | qRT-PCR引物 |
| PST_0819-R | 5′-TGCCCACCACTGGAAGTTG-3′ | |
| PST_0820-F | 5′-TGGTTGCGATGTATCCGCT-3′ | |
| PST_0820-R | 5′-GCCAGACTGAACAATCCCGT-3′ | |
| PST_0821-F | 5′-ACCAGCAGGAAGAAGACACC-3′ | |
| PST_0821-R | 5′-CGATGAGGATGTTGCCCTT-3′ | |
| PST_0822-F | 5′-AAGCTTGCCTTCACCATCAA-3′ | |
| PST_0822-R | 5′-TTTAACGGCTTCTCGGGATAC-3′ | |
| PST_2271-F | 5′-TTCTGGTTGTAGGCGGAGGA-3′ | |
| PST_2271-R | 5′-GTTTCCGGACTGGTATTCGC-3′ | |
| PST_4066-F | 5′-TTCACCACCTGGGAGTTCAG-3′ | |
| PST_4066-R | 5′-TCATCACCGACAAGGAAGCT-3′ | |
| katE-F | 5′-GCTGGACCCGACCAAAAT-3′ | |
| katE-R | 5′-CGGACGGTTGATCGGAAT-3′ | |
| PST_1360-F | 5′-CGCTGGTTGTGGTCAATACG-3′ | |
| PST_1360-R | 5′-ACTGCCTGGGTCTGGGTCAT-3′ | |
| PST_2535-F | 5′-TTCCACTTGATCGCCTTGCT-3′ | |
| PST_2535-R | 5′-GTGGTTTCACGCCCCAGTAC-3′ | |
| sodC-F | 5′-CACGGCTTTCATATCCACG-3′ | |
| sodC-R | 5′-CACGGCTTTCATATCCACG-3′ | |
| sodB-F | 5′-AAGGAAGAGTTCACCAAGACCG-3′ | |
| sodB-R | 5′-ACGAAGTCCCAGTTCACCAG-3′ |
Table 1 Primers used in this study
| 引物名称 | 引物序列(5´→3´) | 功能 |
|---|---|---|
| furKOF1 | 5´-ATAAGCTTCTGGACACCATCTACACCCT-3´ | fur上游同源臂扩增引物,用于构建缺失突变株 |
| furKOR1 | 5´-AGCTCGAATTCGATATCCCTTTTTTATGCCGCTTT-3´ | |
| furKOF2 | 5´-AAATAAGGATCCTCTAGACTCATGTGTCGACGGT-3´ | fur下游同源臂扩增引物,用于构建缺失突变株 |
| furKOR2 | 5´-ATGCTAGCTTTTTTCATTCGGTTTCC-3´ | |
| furF | 5´-AAGCTTACCTGACCGAACAATCCCT-3´ | fur扩增引物,用于构建功能回补株 |
| furR | 5´-GGTACCGGTCGTTGGCATTGAATA-3´ | |
| PST_0819-F | 5′-ATAGCCTGCTCAATGCCCA-3′ | qRT-PCR引物 |
| PST_0819-R | 5′-TGCCCACCACTGGAAGTTG-3′ | |
| PST_0820-F | 5′-TGGTTGCGATGTATCCGCT-3′ | |
| PST_0820-R | 5′-GCCAGACTGAACAATCCCGT-3′ | |
| PST_0821-F | 5′-ACCAGCAGGAAGAAGACACC-3′ | |
| PST_0821-R | 5′-CGATGAGGATGTTGCCCTT-3′ | |
| PST_0822-F | 5′-AAGCTTGCCTTCACCATCAA-3′ | |
| PST_0822-R | 5′-TTTAACGGCTTCTCGGGATAC-3′ | |
| PST_2271-F | 5′-TTCTGGTTGTAGGCGGAGGA-3′ | |
| PST_2271-R | 5′-GTTTCCGGACTGGTATTCGC-3′ | |
| PST_4066-F | 5′-TTCACCACCTGGGAGTTCAG-3′ | |
| PST_4066-R | 5′-TCATCACCGACAAGGAAGCT-3′ | |
| katE-F | 5′-GCTGGACCCGACCAAAAT-3′ | |
| katE-R | 5′-CGGACGGTTGATCGGAAT-3′ | |
| PST_1360-F | 5′-CGCTGGTTGTGGTCAATACG-3′ | |
| PST_1360-R | 5′-ACTGCCTGGGTCTGGGTCAT-3′ | |
| PST_2535-F | 5′-TTCCACTTGATCGCCTTGCT-3′ | |
| PST_2535-R | 5′-GTGGTTTCACGCCCCAGTAC-3′ | |
| sodC-F | 5′-CACGGCTTTCATATCCACG-3′ | |
| sodC-R | 5′-CACGGCTTTCATATCCACG-3′ | |
| sodB-F | 5′-AAGGAAGAGTTCACCAAGACCG-3′ | |
| sodB-R | 5′-ACGAAGTCCCAGTTCACCAG-3′ |
| 1 | ANDREWS S C, ROBINSON A K, RODRÍGUEZ-QUIÑONES F J F M R. Bacterial iron homeostasis[J]. FEMS Microbiol. Rev., 2003, 27(2-3): 215-237. |
| 2 | KEHRER J P J T. The Haber-Weiss reaction and mechanisms of toxicity[J]. Toxicology, 2000, 149(1): 43-50. |
| 3 | FILLAT M F J A O B, BIOPHYSICS. The FUR (ferric uptake regulator) superfamily: diversity and versatility of key transcriptional regulators[J]. Archiv. Biochem. Biophys., 2014, 546: 41-52. |
| 4 | JIAO J, ZHANG B, LI M L, et al.. The zinc-finger bearing xenogeneic silencer MucR in α-proteobacteria balances adaptation and regulatory integrity[J]. ISME J., 2022, 16(3): 738-749. |
| 5 | KIM I H, WEN Y, SON J S, et al.. The fur-iron complex modulates expression of the quorum-sensing master regulator, SmcR, to control expression of virulence factors in Vibrio vulnificus [J]. Infect. Immun., 2013, 81(8): 2888-2898. |
| 6 | HERNÁNDEZ-PRIETO M A, SCHÖN V, GEORG J, et al.. Iron deprivation in Synechocystis: inference of pathways, non-coding RNAs, and regulatory elements from comprehensive expression profiling[J]. Genes Genom. Genet., 2012, 2(12): 1475-1495. |
| 7 | HANTKE K. Regulation of ferric iron transport in Escherichia coli K12: isolation of a constitutive mutant[J]. Mol. Gen. Genet., 1981, 182: 288-292. |
| 8 | BAGG A, NEILANDS J J B. Ferric uptake regulation protein acts as a repressor, employing iron (Ⅱ) as a cofactor to bind the operator of an iron transport operon in Escherichia coli [J]. Biochemistry, 1987, 26(17): 5471-5477. |
| 9 | SCHRÖDER J, JOCHMANN N, RODIONOV D A, et al.. The Zur regulon of Corynebacterium glutamicum ATCC 13032[J]. BMC Genom., 2010, 11(1): 1-18. |
| 10 | DE LORENZO V, WEE S, HERRERO M, et al.. Operator sequences of the aerobactin operon of plasmid ColV-K30 binding the ferric uptake regulation (fur) repressor[J]. J. Bacteriol., 1987, 169(6): 2624-2630. |
| 11 | CARPENTER B M, GILBREATH J J, PICH O Q, et al.. Identification and characterization of novel Helicobacter pylori apo-fur-regulated target genes[J]. J. Bacteriol., 2013, 195(24): 5526-5539. |
| 12 | CRAIG S, CARPENTER C, MEY A, et al.. Positive regulation of the Vibrio cholerae porin OmpT by iron and Fur[J]. J. Bacteriol., 2011, 193(23): 6505-6511. |
| 13 | ALAMURI P, MEHTA N, BURK A, et al.. Regulation of the Helicobacter pylori Fe-S cluster synthesis protein NifS by iron, oxidative stress conditions, and fur [J]. J. Bacteriol., 2006, 188(14): 5325-5330. |
| 14 | MASSÉ E, GOTTESMAN S J P O T N A O S. A small RNA regulates the expression of genes involved in iron metabolism in Escherichia coli [J]. Proc. Natl. Acad. Sci. USA, 2002, 99(7): 4620-4625. |
| 15 | WILDERMAN P J, SOWA N A, FITZGERALD D J, et al.. Identification of tandem duplicate regulatory small RNAs in Pseudomonas aeruginosa involved in iron homeostasis[J]. Proc. Natl. Acad. Sci. USA, 2004, 101(26): 9792-9797. |
| 16 | MASSÉ E, VANDERPOOL C K, GOTTESMAN S J J O B. Effect of RyhB small RNA on global iron use in Escherichia coli [J]. J. Bacteriol., 2005, 187(20): 6962-6971. |
| 17 | 丘元盛, 周淑萍, 莫小真, 等. 水稻根际固氮细菌的研究[J]. 科学通报, 1980, 25(21): 1008. |
| 18 | YAN Y, YANG J, DOU Y, et al.. Nitrogen fixation island and rhizosphere competence traits in the genome of root-associated Pseudomonas stutzeri A1501[J]. Proc. Natl. Acad. Sci. USA, 2008, 105(21): 7564-7569. |
| 19 | HE S, CHEN M, XIE Z, et al.. Involvement of GlnK, a PⅡ protein, in control of nitrogen fixation and ammonia assimilation in Pseudomonas stutzeri A1501[J]. Arch. Microbiol., 2008, 190(1): 1-10. |
| 20 | YAN Y, PING S, PENG J, et al.. Global transcriptional analysis of nitrogen fixation and ammonium repression in root-associated Pseudomonas stutzeri A1501[J]. BMC Genom., 2010, 11(1): 1-13. |
| 21 | HAN Y, WANG R, YANG Z, et al.. 1-aminocyclopropane-1-carboxylate deaminase from Pseudomonas stutzeri A1501 facilitates the growth of rice in the presence of salt or heavy metals[J]. J. Microbiol. Biotechnol., 2015, 25(7): 1119-1128. |
| 22 | ZHAN Y, YAN Y, DENG Z, et al.. The novel regulatory ncRNA, NfiS, optimizes nitrogen fixation via base pairing with the nitrogenase gene nifK mRNA in Pseudomonas stutzeri A1501 [J/OL]. Proc. Natl. Acad. Sci. USA, 2016, 113(30): E4348-E4356 [2022-05-12]. . |
| 23 | KE X, FENG S, WANG J, et al.. Effect of inoculation with nitrogen-fixing bacterium Pseudomonas stutzeri A1501 on maize plant growth and the microbiome indigenous to the rhizosphere[J]. System. Appl. Microbiol., 2019, 42(2): 248-260. |
| 24 | ZHAN Y, DENG Z, YAN Y, et al.. NfiR, a new regulatory noncoding RNA (ncRNA), is required in concert with the NfiS ncRNA for optimal expression of nitrogenase genes in Pseudomonas stutzeri A1501[J/OL]. Appl. Environ. Microbiol., 2019, 85(14): e00762-19 [2022-05-12]. . |
| 25 | GUTTERIDGE J M, HALLIWELL B J. Free radicals and antioxidants in the year 2000: a historical look to the future[J]. Ann. New York Acad. Sci., 2000, 899(1): 136-147. |
| 26 | FIERER N J N R M. Embracing the unknown: disentangling the complexities of the soil microbiome[J]. Nat. Rev. Microbiol., 2017, 15(10): 579-590. |
| 27 | 罗安程, 章永松, 林咸永, 等. 有机肥对水稻根际土壤中微生物和酶活性的影响[J]. 植物营养与肥料学报, 1999, 5(4): 321-327. |
| 28 | WILSON B R, BOGDAN A R, MIYAZAWA M, et al.. Siderophores in iron metabolism: from mechanism to therapy potential[J]. Trends Mol. Med., 2016, 22(12): 1077-1090. |
| 29 | HOWARD J B, REES D C J P O T N A O S. How many metals does it take to fix N2? A mechanistic overview of biological nitrogen fixation[J]. Proc. Natl. Acad. Sci. USA, 2006, 103(46): 17088-17093. |
| 30 | XIE Z, DOU Y, PING S, et al.. Interaction between NifL and NifA in the nitrogen-fixing Pseudomonas stutzeri A1501[J]. Microbiology, 2006, 152(12): 3535-3542. |
| 31 | OCHSNER U A, VASIL A I, VASIL M L J J O B. Role of the ferric uptake regulator of Pseudomonas aeruginosa in the regulation of siderophores and exotoxin A expression: purification and activity on iron-regulated promoters[J]. J. Bacteriol., 1995, 177(24): 7194-7201. |
| 32 | KLEBBA P E, RUTZ J M, LIU J, et al.. Mechanisms of TonB-catalyzed iron transport through the enteric bacterial cell envelope[J]. J. Bioenerg. Biomem., 1993, 25(6): 603-611. |
| 33 | JOHNSON K S, GORDON R M, COALE K H J M C. What controls dissolved iron concentrations in the world ocean?[J]. Marine Chem., 1997, 57(3-4): 137-161. |
| [1] | Tianyuan ZHAO, Jing WANG, Yulu WANG, Chunsen YUAN, Xuechai CHEN. Research Progress on Neuroprotective Effects of Betaine [J]. Current Biotechnology, 2025, 15(2): 220-225. |
| [2] | Changze LI, Shuai LIU, Tongxiang DIAO, Keqin ZHANG, Dingqi SUN, Hui ZHANG. Fermented Epimedium Improves Sperm Deficiency Model in Mice: Effects and Mechanisms [J]. Current Biotechnology, 2025, 15(1): 170-175. |
| [3] | Jianhong YANG, Boyan LIU, Jun CHEN, Zhihui QIU, Baoqiang LI, Shucun QIN, Yandong NIU, Lei HE. Effects of Pre-treatment of Nanobubble Hydrogen Water on the Mouse Psoriasis Induction by Imiquimod [J]. Current Biotechnology, 2024, 14(4): 676-684. |
| [4] | Jianhong YANG, Jun CHEN, Xuefei LI, Lijun LIU, Lili CHEN, Xinsuo DUAN, Shucun QIN, Lei HE. The Potential and Prospect of Molecular Hydrogen in the Treatment of Skin Diseases [J]. Current Biotechnology, 2023, 13(6): 875-881. |
| [5] | Junkai ZHU, Lingzhi GE, Chao ZHANG, Can CAO, Jiahui WU, Zhen MU. Inhibitory Effect of Hydrogen Molecule on Imiquimod-induced Psoriasis-like Dermatitis in Mice [J]. Current Biotechnology, 2023, 13(6): 945-953. |
| [6] | Shiming LI, Peng ZHANG, Pengxiang ZHAO, Fei XIE, Xiaoping CHEN, Mengyu LIU. Research Progress of Oxidative Stress and Disuse Muscular Atrophy [J]. Current Biotechnology, 2023, 13(4): 524-533. |
| [7] | Li CAO, Shun LUO, Shihai XING, Jinshu QIU, Zhiyong LIN, Jun LIN, Xu MENG, Feng LIU. Effects of Dioscorea opposita Extract on CHO Cell Growth and Monoclonal Antibody Expression [J]. Current Biotechnology, 2023, 13(3): 449-456. |
| [8] | Jingyu CAO, Chengmei LIU, Chenxu QI, Kaiyan DU, Meng CHEN, Siwei HOU. Research Progress of Nrf2 in Ferroptosis After Spinal Cord Injury [J]. Current Biotechnology, 2023, 13(2): 240-246. |
| [9] | Jun CHEN, Shucun QIN, Lei HE. Inhibiting Effect of Hydrogen-rich Saline on Psoriasis in Imiquimod-induced Mouse Models [J]. Current Biotechnology, 2022, 12(4): 503-509. |
| [10] | Yuhu WANG, Mingmin ZHAO, Hongli ZHENG. Research Progress on Plant Endophytic Nitrogen⁃fixing Bacteria and Their Nitrogen Fixation Mechanism [J]. Current Biotechnology, 2022, 12(1): 17-26. |
| [11] | WANG Zhen, YANG Luo, LIAO Min, HAO Yarong*. Research Progress of mTOR Pathway in Pathogenesis of Diabetic Nephropathy [J]. Curr. Biotech., 2021, 11(3): 316-321. |
| [12] | ZHAO Jie1, ZHANG Weijie2, CHEN Yao3, XIANG Qingfang1, ZHAO Ting1, MAO Guanghua3, FENG Weiwei3, YANG Liuqing1*. Effect of Bee Pupa Polypeptide on the Immune Activity of Macrophage RAW264.7 [J]. Curr. Biotech., 2020, 10(5): 550-556. |
| [13] | LIU Yichao, ZHAN Yuhua, KE Xiubin, YAN Yongliang*. A Review: Bacterial Metal Induction and Homeostasis Regulation [J]. Curr. Biotech., 2019, 9(4): 317-325. |
| [14] | XIONG Yongmin, YANG Xiaoli, ZHANG Rongqiang, LI Baorong, CHEN Jinghong, DAI Xiaoxia, CHEN Qun, TAN Wuhong, ZHANG Feng. The Effect of Selenium on Endemic Diseases and its Molecular Mechanism [J]. Curr. Biotech., 2017, 7(5): 501-505. |
| [15] | YANG Yujie, LI Nan*. Selenoproteins and Neurodegenerative Diseases [J]. Curr. Biotech., 2017, 7(5): 511-517. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||