Current Biotechnology ›› 2021, Vol. 11 ›› Issue (6): 661-667.DOI: 10.19586/j.2095-2341.2020.0104
• Reviews • Next Articles
					
													Qiao CAO1( ), Zhanliang SHI1, Guocong ZHANG1, Jinfu BAN1, Shusong ZHENG2, Xiaoyi FU1, Shichang ZHANG1, Mingqi HE1, Ran HAN1, Zhenxian GAO1(
), Zhanliang SHI1, Guocong ZHANG1, Jinfu BAN1, Shusong ZHENG2, Xiaoyi FU1, Shichang ZHANG1, Mingqi HE1, Ran HAN1, Zhenxian GAO1( )
)
												  
						
						
						
					
				
Received:2020-08-28
															
							
															
							
																	Accepted:2021-09-03
															
							
																	Online:2021-11-25
															
							
																	Published:2021-11-26
															
						Contact:
								Zhenxian GAO   
													
        
               		曹巧1( ), 史占良1, 张国丛1, 班进福1, 郑树松2, 傅晓艺1, 张士昌1, 何明琦1, 韩然1, 高振贤1(
), 史占良1, 张国丛1, 班进福1, 郑树松2, 傅晓艺1, 张士昌1, 何明琦1, 韩然1, 高振贤1( )
)
                  
        
        
        
        
    
通讯作者:
					高振贤
							作者简介:曹巧 E-mail:qiaocao19@163.com;
				
							基金资助:CLC Number:
Qiao CAO, Zhanliang SHI, Guocong ZHANG, Jinfu BAN, Shusong ZHENG, Xiaoyi FU, Shichang ZHANG, Mingqi HE, Ran HAN, Zhenxian GAO. Progress of CRISPR/Cas9 Application in Wheat Breeding[J]. Current Biotechnology, 2021, 11(6): 661-667.
曹巧, 史占良, 张国丛, 班进福, 郑树松, 傅晓艺, 张士昌, 何明琦, 韩然, 高振贤. CRISPR/Cas9技术在小麦育种中的应用进展[J]. 生物技术进展, 2021, 11(6): 661-667.
| 1 | CARROLL D. Genome engineering with zinc-finger nucleases[J]. Genetics, 2011, 188(4): 773782. | 
| 2 | CERMAK T, DOYLE E L, CHRISTIAN M, et al.. Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting[J/OL]. Nucl. Acids Res., 2011, 39(12): e82[2021-10-20]. . | 
| 3 | JINEK M, CHYLINSKI K, FONFARA I, et al.. A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity[J]. Science, 2012, 337(6096): 816821. | 
| 4 | SYMINGTON L S, GAUTIER J. Double-strand break end resection and repair pathway choice[J]. Annu. Rev. Genet., 2011, 45(1): 247-271. | 
| 5 | JINEK M, JIANG F, TAYLOR D, et al.. Structures of Cas9 endonucleases reveal RNA-mediated conformational activation[J]. Science, 2014, 343(6176): 1247997-1247997. | 
| 6 | WANG K, GONG Q, YE X. Recent developments and applications of genetic transformation and genome editing technologies in wheat[J]. Theor. Appl. Genet., 2020, 133(5): 1603-1622. | 
| 7 | ISHINO Y, SHINAGAWA H, MAKINO K, et al.. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product[J]. J. Bacteriol., 1987, 169(12): 5429-5433. | 
| 8 | BARRANGOU R, FREMAUX C, DEVEAU H, et al.. CRISPR provides acquired resistance against viruses in prokaryotes[J]. Science, 2007, 315(5819): 1709-1712. | 
| 9 | WIEDENHEFT B, STERNBERG S H, DOUDNA J A. RNA-guided genetic silencing systems in bacteria and archaea[J]. Nature, 2012, 482(7385): 331-338. | 
| 10 | TERNS M P, TERNS R M. CRISPR-based adaptive immune systems[J]. Curr. Opin. Microbiol., 2011, 14(3): 321-327. | 
| 11 | CHO S W, KIM S, KIM J M, et al.. Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease[J]. Nat. Biotechnol., 2013, 31(3): 230-232. | 
| 12 | HWANG W Y, YANFANG F, DEEPAK R, et al.. Efficient genome editing in zebrafish using a CRISPR-Cas system[J]. Nat. Biotechnol., 2013, 31(3): 227-229. | 
| 13 | JINEK M, EAST A, CHENG A, et al.. RNA-programmed genome editing in human cells[J/OL]. Elife, 2013, 2: e00471[2021-10-20]. . | 
| 14 | MALI P, YANG L, ESVELT K M, et al.. RNA-guided human genome engineering via Cas9[J]. Science, 2013, 339(6121): 823-826. | 
| 15 | LE C, RAN F A, COX D, et al.. Multiplex genome engineering using CRISPR/Cas systems[J]. Science, 2013, 339(6121): 819-823. | 
| 16 | LI J F, NORVILLE J E, AACH J, et al.. Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotianabenthamiana using guide RNA and Cas9[J]. Nat. Biotechnol., 2013, 31(8): 688-691. | 
| 17 | NEKRASOV V, STASKAWICZ B, WEIGEL D, et al.. Targeted mutagenesis in the model plant Nicotianabenthamiana using Cas9 RNA-guided endonuclease[J]. Nat. Biotechnol., 2013, 31(8): 691-693. | 
| 18 | MAKAROVA K S, HAFT D H, BARRANGOU R, et al.. Evolution and classification of the CRISPR-Cas systems[J]. Nat. Rev. Microbiol., 2011, 9(6): 467-477. | 
| 19 | MAKAROVA K S, ARAVIND L, WOLF Y I, et al.. Unification of Cas protein families and a simple scenario for the origin and evolution of CRISPR-Cas systems[J]. Biol. Direct., 2011, 6(38): 1-27. | 
| 20 | DELTCHEVA E, CHYLINSKI K, SHARMA C M, et al.. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III[J]. Nature, 2011, 471(7340): 602-607. | 
| 21 | SAPRANAUSKAS R, GASIUNAS G, FREMAUX C, et al.. The Streptococcus thermophilus CRISPR/Cas system provides immunity in Escherichia coli[J]. Nucl. Acids Res., 2011, 39(21): 9275-9282. | 
| 22 | 殷朝敏,范秀芝,史徳芳,等.CRISPR/Cas基因编辑技术及其在真菌中的应用[J].生物技术通报,2017,33(3):58-65. | 
| 23 | GASIUNAS G, BARRANGOU R, HORVATH P, et al.. Cas9–crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria[J]. Proc. Natl. Acad. Sci. USA, 2012, 109(39): 15539-15540. | 
| 24 | VATS S, KUMAWAT S, KUMAR V, et al.. Genome editing in plants: exploration of technological advancements and challenges[J]. Cells, 2019, 8(11): 1386-1424. | 
| 25 | STERNBERG S H, REDDING S, JINEK M, et al.. DNA interrogation by the CRISPR RNA-guided endonuclease Cas9[J]. Nature, 2014, 507(7490): 62-67. | 
| 26 | WANG Y, CHENG X, SHAN Q, et al.. Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew[J]. Nat. Biotechnol., 2014, 32(9): 947-951. | 
| 27 | WANG P, JUN Z, SUN L, et al.. High efficient multi-sites genome editing in allotetraploid cotton (Gossypium hirsutum) using CRISPR/Cas9 system[J]. Plant Biotechnol. J., 2017, 16(1): 137-150. | 
| 28 | JIA H, ZHANG Y, ORBOVIĆ V, et al.. Genome editing of the disease susceptibility gene CsLOB1 in citrus confers resistance to citrus canker [J]. Plant Biotechnol. J., 2017, 15(7): 817-823. | 
| 29 | ANDERSSON M, TURESSON H, NICOLIA A, et al.. Efficient targeted multiallelic mutagenesis in tetraploid potato (Solanum tuberosum) by transient CRISPR-Cas9 expression in protoplasts[J]. Plant Cell Rep., 2017, 36(1): 117-128. | 
| 30 | FU Y, FODEN J A, KHAYTER C, et al.. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells[J]. Nat. Biotechnol, 2013, 31(9): 822-826. | 
| 31 | HSU P D, SCOTT D A, WEINSTEIN J A, et al.. DNA targeting specificity of RNA-guided Cas9 nucleases[J]. Nat. Biotechnol, 2013, 31(9): 827-832. | 
| 32 | LIN Y, CRADICK T J, BROWN M T, et al.. CRISPR/Cas9 systems have off-target activity with insertions or deletions between target DNA and guide RNA sequences[J]. Nucl. Acids Res., 2014, 42(11): 7473-7485. | 
| 33 | FU Y, SANDER J D, REYON D, et al.. Improving CRISPR-Cas nuclease specificity using truncated guide RNAs[J]. Nat. Biotechnol., 2014, 32(3): 279-284. | 
| 34 | RAN F, HSU P, LIN C Y, et al.. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity[J]. Cell, 2013, 154(6): 1380-1389. | 
| 35 | SOYARS C L, PETERSON B A, BURR C A, et al.. Cutting edge genetics: CRISPR/Cas9 editing of plant genomes[J]. Plant Cell Physiol., 2018, 59(8): 1608-1620. | 
| 36 | SÁNCHEZ-LEÓN S, GIL-HUMANES J, OZUNA SERAFINI C, et al.. Low-gluten, non-transgenic wheat engineered with CRISPR/Cas9[J]. Plant Biotechnol. J., 2017, 16(4): 902-910. | 
| 37 | WANG W, PAN Q, HE F, et al.. Transgenerational CRISPR-Cas9 activity facilitates multiplex gene editing in allopolyploid wheat[J]. CRISPR J., 2018, 1(1): 65-74. | 
| 38 | CAROLINE T, ANNE P, MICHEL B, et al.. Biolistic transformation of wheat: increased production of plants with simple insertions and heritable transgene expression[J]. Plant Cell Tiss. Org., 2014, 119(1): 171-181. | 
| 39 | DAI S, PING Z, MARMEY P, et al.. Comparative analysis of transgenic rice plants obtained by Agrobacterium-mediated transformation and particle bombardment[J]. Mol. Breed., 2001, 7(1): 25-33. | 
| 40 | ISHIDA Y, TSUNASHIMA M, HIEI Y, et al.. Wheat (Triticum aestivum L.) transformation using immature embryos[J]. Methods Mol. Biol., 2015, 1223: 189-198. | 
| 41 | WANG K, LIU H, DU L, et al.. Generation of marker-free transgenic hexaploid wheat via an Agrobacterium-mediated co-transformation strategy in commercial Chinese wheat varieties[J]. Plant Biotechnol. J., 2016, 15(5): 12-20. | 
| 42 | ZHANG Z, HUA L, GUPTA A, et al.. Development of an Agrobacterium-delivered CRISPR/Cas9 system for wheat genome editing[J]. Plant Biotechnol. J., 2019, 17(8): 1623-1635. | 
| 43 | WANG W, PAN Q, TIAN B, et al.. Gene editing of the wheat homologs of TONNEAU1-recruiting motif encoding gene affects grain shape and weight in wheat[J]. Plant J., 2019, 100(2): 251-264. | 
| 44 | ZHANG Y, LI D, ZHANG D, et al.. Analysis of the functions of TaGW2 homoeologs in wheat grain weight and protein content traits[J]. Plant J., 2018, 94(5): 857-866. | 
| 45 | SINGH M, KUMAR M, ALBERTSEN M C, et al.. Concurrent modifications in the three homeologs of Ms45 gene with CRISPR-Cas9 lead to rapid generation of male sterile bread wheat (Triticum aestivum L.)[J]. Plant Mol. Biol., 2018, 97(4): 371-383. | 
| 46 | ABE F, HAQUE E, HISANO H, et al.. Genome-edited triple-recessive mutation alters seed dormancy in wheat[J].Cell Rep., 2019, 28(5): 1362-1369. | 
| 47 | HESS G T, TYCKO J, YAO D, et al.. Methods and applications of CRISPR-mediated base editing in eukaryotic genomes[J]. Mol. Cell, 2017, 68(1): 26-43. | 
| 48 | ZONG Y, SONG Q, CHAO L, et al.. Efficient C-to-T base editing in plants using a fusion of nCas9 and human APOBEC3A[J]. Nat. Biotechnol., 2018, 36(10): 950-953. | 
| 49 | HU J H, MILLER S M, GEURTS M H, et al.. Evolved Cas9 variants with broad PAM compatibility and high DNA specificity[J]. Nature, 2018, 556(7699): 57-63. | 
| 50 | LIN Q, ZONG Y, XUE C, et al.. Prime genome editing in rice and wheat[J]. Nat. Biotechnol., 2020, 38(5): 582-585. | 
| 51 | WANG K, LIU H, DU L, et al.. Generation of marker‐free transgenic hexaploid wheat via an Agrobacterium‐mediated co‐transformation strategy in commercial Chinese wheat varieties[J]. Plant Biotechnol. J., 2016, 15(5): 12-20. | 
| 52 | WOO J W, KIM J, KWON S I, et al.. DNA-free genome editing in plants with preassembled CRISPR-Cas9 ribonucleoproteins[J]. Nat. Biotechnol., 2015, 33(11): 1162-1164. | 
| 53 | STODDARD T J, CLASEN B M, BALTES N J, et al.. Targeted mutagenesis in plant cells through transformation of sequence-specific nuclease mRNA[J/OL]. PLoS ONE, 2016, 11(5): e0154634[2021-10-21]. . | 
| 54 | CHOI I R, STENGER D C, MORRIS T J, et al.. A plant virus vector for systemic expression of foreign genes in cereals[J]. Plant J., 2000, 23(4): 547-555. | 
| [1] | Yiyang LI, Zhizheng ZHOU, Shufei WANG, Boya LIU, Yufei LIU, Xiaoyan LI, Hongshu SUI, Dongwei LIU. Application and Prospect of CRISPR/Cas9 Gene Editing Technology in Disease Treatment [J]. Current Biotechnology, 2025, 15(1): 35-42. | 
| [2] | Guang HU, Zhi WANG, Wei FU, Yuting SHI, Shanshan CHEN, Liang LUO, Shuang WEI. Establishment of Detection Method Based on TaqMan Real-time Fluorescence Quantitative PCR Technology for OsWx-edited Rice [J]. Current Biotechnology, 2025, 15(1): 86-92. | 
| [3] | Jing WANG, Haitao GUAN, Xiaolei ZHANG, Baohuai WANG, Baohai LIU, Hongtao WEN. Detection Dynamic and Development Tendency of Agricultural Gene Editing Products [J]. Current Biotechnology, 2024, 14(5): 712-723. | 
| [4] | Mingyang JIA, Lei WANG, Junfeng CHEN, Jiaqing ZHANG, Xiangzhou YAN, Baosong XING, Jing WANG. Research Progress of CRISPR/Cas9 Gene Editing Technology in Livestock and Poultry Breeding [J]. Current Biotechnology, 2024, 14(4): 529-536. | 
| [5] | Jiacong ZHANG, Jigang LU. Establishment of Biallelic Knockout Technique in Nile Tilapia (Oreochromis niloticus) Based on CRISPR/Cas9 System: A Case Study of SLC24A5 Gene [J]. Current Biotechnology, 2024, 14(3): 442-450. | 
| [6] | Xiaotian ZHANG, Zhi WANG, Pengyu ZHU, Shuang WEI, Wei FU, Chunmeng HUANG, Zhihong LI, Huiyu WANG, Yue JIAO. A Rapid Detection Method Based on qPCR for CRISPR/Cas9 Edited Crops [J]. Current Biotechnology, 2023, 13(6): 907-912. | 
| [7] | Kehao CAO, Junli ZHU, Huashan HE, Weizhuo XU. Impact of the Fourth Modifications of Patent Laws on Biotechnology Patent Applications and Industry Development [J]. Current Biotechnology, 2023, 13(5): 663-670. | 
| [8] | Ali WANG, Jiangdong LIU. Research Progress on the CRISPR/Cas System in Zebrafish [J]. Current Biotechnology, 2023, 13(4): 485-491. | 
| [9] | Maolan XIONG, Siyan WEI, Juntao LUO, Bingshe HAN, Junfang ZHANG. The Effects of hdac11 Knockout of Zebrafish on Lipid Metabolism [J]. Current Biotechnology, 2023, 13(4): 588-595. | 
| [10] | Siyu GAI, Ziqi CHEN, Hanchao XIA, Rengui ZHAO, Xiangguo LIU. Research Progress of CRISPR/Cas9 Technology in Plant Promoter Editing [J]. Current Biotechnology, 2023, 13(3): 321-328. | 
| [11] | Hui SUN, Chunyi ZHANG, Ling JIANG. Progress of Plant Molecular Farming in Pharmaceutical Use [J]. Current Biotechnology, 2023, 13(1): 65-71. | 
| [12] | Yang YANG, Fenglin WANG, De LIU, Yuanyuan LUO, Jianhua ZHU. Research Progress of CRISPR⁃Cas9 Technology on the Production of Plant Secondary Metabolites [J]. Current Biotechnology, 2022, 12(6): 806-816. | 
| [13] | Kun YU, Jiaqi XUE, Jinkuan WANG, Yongtao YU. Research Progress on Application of CRISPR/Cas9 Gene Editing Technique in Filamentous Fungi [J]. Current Biotechnology, 2022, 12(5): 696-704. | 
| [14] | Weisong GAO, Jinping DOU, Shuang WEI, Xingjian LIU, Zhifang ZHANG, Yinyu LI. Classification and Research Status of CRISPR/Cas Systems [J]. Current Biotechnology, 2022, 12(4): 532-538. | 
| [15] | Xing DANG, Binwei ZHI, Kehao CAO, Tingting LIU, Biao CHEN, Yuanjie DING. Patent Analysis on Genetically Modified Maize Biological Breeding Technology and Development Suggestions [J]. Current Biotechnology, 2022, 12(4): 614-622. | 
| Viewed | ||||||
| Full text |  | |||||
| Abstract |  | |||||