Current Biotechnology ›› 2025, Vol. 15 ›› Issue (2): 212-219.DOI: 10.19586/j.2095-2341.2024.0175
• Reviews • Previous Articles Next Articles
					
													Zhaohui CUI( ), Ling GUO, Xudong SHEN, Yi LIN, Lili ZHAI(
), Ling GUO, Xudong SHEN, Yi LIN, Lili ZHAI( )
)
												  
						
						
						
					
				
Received:2024-11-08
															
							
															
							
																	Accepted:2025-02-12
															
							
																	Online:2025-03-25
															
							
																	Published:2025-04-29
															
						Contact:
								Lili ZHAI   
													通讯作者:
					翟丽丽
							作者简介:崔兆惠 E-mail: zhaohuicui@126.com;
				
							基金资助:CLC Number:
Zhaohui CUI, Ling GUO, Xudong SHEN, Yi LIN, Lili ZHAI. Immunogenicity Formation Mechanism and Control Strategy of Biopharmaceuticals[J]. Current Biotechnology, 2025, 15(2): 212-219.
崔兆惠, 郭玲, 沈旭东, 林毅, 翟丽丽. 生物技术药物的免疫原性产生机制与控制策略[J]. 生物技术进展, 2025, 15(2): 212-219.
| 药物因素 | 患者因素 | 
|---|---|
| 天然蛋白与治疗性蛋白的分子结构、氨基酸序列差异(人源化程度) | 疾病类型(免疫介导/非免疫介导的疾病) | 
| 治疗性蛋白聚集 | 年龄 | 
| 治疗性蛋白修饰-氧化、脱酰胺、糖基化 | 与其他药物同用 | 
| 杂质、制剂组分、佐剂 | 剂量 | 
| 剂型 | 治疗频率 | 
| 生产过程 | 给药途径 | 
Table 1 Factors affecting the immunogenicity of biopharmaceuticals
| 药物因素 | 患者因素 | 
|---|---|
| 天然蛋白与治疗性蛋白的分子结构、氨基酸序列差异(人源化程度) | 疾病类型(免疫介导/非免疫介导的疾病) | 
| 治疗性蛋白聚集 | 年龄 | 
| 治疗性蛋白修饰-氧化、脱酰胺、糖基化 | 与其他药物同用 | 
| 杂质、制剂组分、佐剂 | 剂量 | 
| 剂型 | 治疗频率 | 
| 生产过程 | 给药途径 | 
| 1 | SUN R, QIAN M G, ZHANG X. T and B cell epitope analysis for the immunogenicity evaluation and mitigation of antibody-based therapeutics[J/OL]. mAbs, 2024, 16(1): 2324836[2025-02-27]. . | 
| 2 | TOVEY M G, LEGRAND J, LALLEMAND C. Overcoming immunogenicity associated with the use of biopharmaceuticals[J]. Expert Rev. Clin. Pharmacol., 2011, 4(5): 623-631. | 
| 3 | PEDERSEN M E, ØSTERGAARD J, GLINTBORG B, et al.. Assessment of immunogenicity and drug activity in patient sera by flow-induced dispersion analysis[J/OL]. Sci. Rep., 2022, 12: 4670[2025-02-27]. . | 
| 4 | BAKER M P, REYNOLDS H M, LUMICISI B, et al.. Immunogenicity of protein therapeutics: the key causes, consequences and challenges[J]. Self Nonself, 2010, 1(4): 314-322. | 
| 5 | ROSSOTTI M A, BÉLANGER K, HENRY K A, et al.. Immunogenicity and humanization of single-domain antibodies[J]. FEBS J., 2022, 289(14): 4304-4327. | 
| 6 | ORDÁS I, MOULD D R, FEAGAN B G, et al.. Anti-TNF monoclonal antibodies in inflammatory bowel disease: pharmacokinetics-based dosing paradigms[J]. Clin. Pharmacol. Ther., 2012, 91(4): 635-646. | 
| 7 | DVORSCEK A R, MCKENZIE C I, STÄHELI V C, et al.. Conversion of vaccines from low to high immunogenicity by antibodies with epitope complementarity[J]. Immunity, 2024, 57(10): 2433-2452. | 
| 8 | ALHARBI N, SKWARCZYNSKI M, TOTH I. The influence of component structural arrangement on peptide vaccine immunogenicity[J/OL]. Biotechnol. Adv., 2022, 60: 108029[2025-02-27]. . | 
| 9 | EON-DUVAL A, BROLY H, GLEIXNER R. Quality attributes of recombinant therapeutic proteins: an assessment of impact on safety and efficacy as part of a quality by design development approach[J]. Biotechnol. Prog., 2012, 28(3): 608-622. | 
| 10 | RATHORE A S, WINKLE H. Quality by design for biopharmaceuticals[J]. Nat. Biotechnol., 2009, 27(1): 26-34. | 
| 11 | KARLE A C. Applying MAPPs assays to assess drug immunogenicity[J/OL]. Front. Immunol., 2020, 11: 698[2025-02-27]. . | 
| 12 | WANG G, WU T, NING W, et al.. TLimmuno2: predicting MHC class Ⅱ antigen immunogenicity through transfer learning[J/OL]. Brief. Bioinform., 2023, 24(3): bbad116[2025-02-27]. . | 
| 13 | NEWBY M L, ALLEN J D, CRISPIN M. Influence of glycosylation on the immunogenicity and antigenicity of viral immunogens[J/OL]. Biotechnol. Adv., 2024, 70: 108283[2025-02-27]. . | 
| 14 | MARIUZZA R A, WU D, PIERCE B G. Structural basis for T cell recognition of cancer neoantigens and implications for predicting neoepitope immunogenicity[J/OL]. Front. Immunol., 2023, 14: 1303304[2025-02-27]. . | 
| 15 | EL-MANZALAWY Y, DOBBS D, HONAVAR V. Predicting linear B-cell epitopes using string kernels[J]. J. Mol. Recognit., 2008, 21(4): 243-255. | 
| 16 | CONNER S D, SCHMID S L. Regulated portals of entry into the cell[J]. Nature, 2003, 422(6927): 37-44. | 
| 17 | SUN R, QIAN M G, ZHANG X. T and B cell epitope analysis for the immunogenicity evaluation and mitigation of antibody-based therapeutics[J/OL]. mAbs, 2024, 16(1): 2324836[2025-02-27]. . | 
| 18 | MUELLER R, KARLE A, VOGT A, et al.. Evaluation of the immuno-stimulatory potential of stopper extractables and leachables by using dendritic cells as readout[J]. J. Pharm. Sci., 2009, 98(10): 3548-3561. | 
| 19 | PEDROZA-ESCOBAR D, CASTILLO-MALDONADO I, GONZÁLEZ-CORTÉS T, et al.. Molecular bases of protein antigenicity and determinants of immunogenicity, anergy, and mitogenicity[J]. Protein Pept. Lett., 2023, 30(9): 719-733. | 
| 20 | DE GROOT A S, KHAN S, MATTEI A E, et al.. Does human homology reduce the potential immunogenicity of non-antibody scaffolds?[J/OL]. Front. Immunol., 2023, 14: 1215939[2025-02-27]. . | 
| 21 | CROFT N P. Peptide presentation to T cells: solving the immunogenic puzzle: systems immunology profiling of antigen presentation for prediction of CD8+ T cell immunogenicity[J/OL]. Bioessays, 2020, 42(3): e1900200[2025-02-27]. . | 
| 22 | PICHLER W J. Adverse side-effects to biological agents[J]. Allergy, 2006, 61(8): 912-920. | 
| 23 | ZHOU Y, PENNY H L, KROENKE M A, et al.. Immunogenicity assessment of bispecific antibody-based immunotherapy in oncology[J/OL]. J. Immunother. Cancer, 2022, 10(4): e004225[2025-02-27]. . | 
| 24 | SCHELLEKENS H. Biosimilar therapeutics-what do we need to consider?[J]. NDT Plus, 2009, 2(1): 27-36. | 
| 25 | VAN BEERS M M C, SAUERBORN M, GILLI F, et al.. Oxidized and aggregated recombinant human interferon beta is immunogenic in human interferon beta transgenic mice[J]. Pharm. Res., 2011, 28(10): 2393-2402. | 
| 26 | ZHOU S, SCHÖNEICH C, SINGH S K. Biologics formulation factors affecting metal leachables from stainless steel[J]. AAPS PharmSciTech, 2011, 12(1): 411-421. | 
| 27 | CROMWELL M E M, HILARIO E, JACOBSON F. Protein aggregation and bioprocessing[J]. AAPS J., 2006, 8(3): 572-579. | 
| 28 | RUPERTO N, BAZSO A, RAVELLI A, et al.. The paediatric rheumatology international trials organization (PRINTO)[J]. Lupus, 2007, 16(8): 670-676. | 
| 29 | GOPAL A K, KAHL B S, FLOWERS C R, et al.. Idelalisib is effective in patients with high-risk follicular lymphoma and early relapse after initial chemoimmunotherapy[J]. Blood, 2017, 129(22): 3037-3039. | 
| 30 | VITA R, MAHAJAN S, OVERTON J A, et al.. The immune epitope database (IEDB): 2018 update[J/OL]. Nucleic Acids Res., 2019, 47(D1): 339-343. | 
| 31 | MATTEI A E, GUTIERREZ A H, SESHADRI S, et al.. In silico methods for immunogenicity risk assessment and human homology screening for therapeutic antibodies[J/OL]. mAbs, 2024, 16(1): 2333729[2025-02-27]. . | 
| 32 | LI W, WEI J, JIANG Q, et al.. In silico immunogenicity assessment of therapeutic peptides[J]. Curr. Med. Chem., 2024, 31(26): 4100-4110. | 
| 33 | MAZOR R, EBERLE J A, HU X, et al.. Recombinant immunotoxin for cancer treatment with low immunogenicity by identification and silencing of human T-cell epitopes[J]. Proc. Natl. Acad. Sci. USA, 2014, 111(23): 8571-8576. | 
| 34 | HOSHITSUKI K, RATHOD S, RAMSEY M J, et al.. Adalimumab immunogenicity is negatively correlated with anti-hinge antibody levels in patients with rheumatoid arthritis[J]. J. Pharmacol. Exp. Ther., 2020, 375(3): 488-497. | 
| 35 | ARSLAN M, KARADAĞ D, KALYONCU S. Protein engineering approaches for antibody fragments: directed evolution and rational design approaches[J]. Turk. J. Biol., 2019, 43(1): 1-12. | 
| 36 | JANKOWSKI W, MCGILL J, DANIEL LAGASSÉ H A, et al.. Mitigation of T-cell dependent immunogenicity by reengineering factor Ⅶa analogue[J]. Blood Adv., 2019, 3(17): 2668-2678. | 
| 37 | 杜力,刘晓志,魏敬双,等.蛋白质药物糖基化工程化改造研究进展[J].生物技术进展,2020,10(5):448-455. | 
| DU L, LIU X Z, WEI J S, et al.. Research progress of glycosylation engineering of protein drug[J]. Curr. Biotechnol., 2020, 10(5): 448-455. | |
| 38 | BOUNE S, HU P, EPSTEIN A L, et al.. Principles of N-linked glycosylation variations of IgG-based therapeutics: pharmacokinetic and functional considerations[J/OL]. Antibodies, 2020, 9(2): 22[2025-02-27]. . | 
| 39 | KERNSTOCK R, SPERINDE G, FINCO D, et al.. Clinical immunogenicity risk assessment strategy for a low risk monoclonal antibody[J/OL]. Aaps J., 2020, 22(3): 60[2025-02-27]. . | 
| 40 | DOZIER J K, DISTEFANO M D. Site-specific pegylation of therapeutic proteins[J]. Int. J. Mol. Sci., 2015, 16(10): 25831-25864. | 
| 41 | ZINSLI L V, STIERLIN N, LOESSNER M J, et al.. Deimmunization of protein therapeutics-recent advances in experimental and computational epitope prediction and deletion[J]. Comput. Struct. Biotechnol. J., 2021, 19: 315-329. | 
| 42 | NEWBY M L, ALLEN J D, CRISPIN M. Influence of glycosylation on the immunogenicity and antigenicity of viral immunogens[J/OL]. Biotechnol. Adv., 2024, 70: 108283[2025-02-27]. . | 
| 43 | MANNING M C, CHOU D K, MURPHY B M, et al.. Stability of protein pharmaceuticals: an update[J]. Pharm. Res., 2010, 27(4): 544-575. | 
| 44 | TOROSANTUCCI R, MOZZICONACCI O, SHAROV V, et al.. Chemical modifications in aggregates of recombinant human insulin induced by metal-catalyzed oxidation: covalent cross-linking via Michael addition to tyrosine oxidation products[J]. Pharm. Res., 2012, 29(8): 2276-2293. | 
| 45 | ASMANI A Z A, ZAINUDDIN A F F, AHMAD AZMI MURAD N, et al.. Immunogenicity of monoclonal antibody: causes, consequences, and control strategies[J/OL]. Pathol. Res. Pract., 2024, 263: 155627[2025-02-27]. . | 
| 46 | RASHEED Z, ALI R. Reactive oxygen species damaged human serum albumin in patients with type 1 diabetes mellitus: Biochemical and immunological studies[J]. Life Sci., 2006, 79(24): 2320-2328. | 
| 47 | NABHAN M, PALLARDY M, TURBICA I. Immunogenicity of bioproducts: cellular models to evaluate the impact of therapeutic antibody aggregates[J/OL]. Front. Immunol., 2020, 11: 725[2025-02-27]. . | 
| 48 | HERMELING S, CROMMELIN D J A, SCHELLEKENS H, et al.. Structure-immunogenicity relationships of therapeutic proteins[J]. Pharm. Res., 2004, 21(6): 897-903. | 
| 49 | ROSENBERG A S. Effects of protein aggregates: an immunologic perspective[J]. AAPS J., 2006, 8(3): 501-507. | 
| 50 | SAUERBORN M, BRINKS V, JISKOOT W, et al.. Immunological mechanism underlying the immune response to recombinant human protein therapeutics[J]. Trends Pharmacol. Sci., 2010, 31(2): 53-59. | 
| 51 | SEIDL A, HAINZL O, RICHTER M, et al.. Tungsten-induced denaturation and aggregation of epoetin alfa during primary packaging as a cause of immunogenicity[J]. Pharm. Res., 2012, 29(6): 1454-1467. | 
| 52 | WALSH G. Biopharmaceutical benchmarks 2010[J]. Nat. Biotechnol., 2010, 28(9): 917-924. | 
| 53 | COST G J, FREYVERT Y, VAFIADIS A, et al.. BAK and BAX deletion using zinc-finger nucleases yields apoptosis-resistant CHO cells[J]. Biotechnol. Bioeng., 2010, 105(2): 330-340. | 
| 54 | TUAMEH A, HARDING S E, DARTON N J. Methods for addressing host cell protein impurities in biopharmaceutical product development[J/OL]. Biotechnol. J., 2023, 18(3): e2200115[2025-02-27]. . | 
| 55 | CHUNG C H, MIRAKHUR B, CHAN E, et al.. Cetuximab-induced anaphylaxis and IgE specific for galactose-α-1, 3-galactose[J]. N. Engl. J. Med., 2008, 358(11): 1109-1117. | 
| 56 | SALEH H, EMBRY S, NAULI A, et al.. Anaphylactic reactions to oligosaccharides in red meat: a syndrome in evolution[J/OL]. Clin. Mol. Allergy, 2012, 10(1): 5[2025-02-27]. . | 
| 57 | QIAN J, LIU T, YANG L, et al.. Structural characterization of N-linked oligosaccharides on monoclonal antibody cetuximab by the combination of orthogonal matrix-assisted laser desorption/ionization hybrid quadrupole-quadrupole time-of-flight tandem mass spectrometry and sequential enzymatic digestion[J]. Anal. Biochem., 2007, 364(1): 8-18. | 
| 58 | JEFFERIS R. Recombinant antibody therapeutics: the impact of glycosylation on mechanisms of action[J]. Trends Pharmacol. Sci., 2009, 30(7): 356-362. | 
| 59 | BOSQUES C J, COLLINS B E, MEADOR J W, et al.. Chinese Hamster ovary cells can produce galactose-α-1,3-galactose antigens on proteins[J]. Nat. Biotechnol., 2010, 28(11): 1153-1156. | 
| 60 | PADLER-KARAVANI V, VARKI A. Potential impact of the non-human sialic acid N-glycolylneuraminic acid on transplant rejection risk[J]. Xenotransplantation, 2011, 18(1): 1-5. | 
| 61 | GHADERI D, TAYLOR R E, PADLER-KARAVANI V, et al.. Implications of the presence of N-glycolylneuraminic acid in recombinant therapeutic glycoproteins[J]. Nat. Biotechnol., 2010, 28(8): 863-867. | 
| 62 | MAEDA E, KITA S, KINOSHITA M, et al.. Analysis of nonhuman N-glycans as the minor constituents in recombinant monoclonal antibody pharmaceuticals[J]. Anal. Chem., 2012, 84(5): 2373-2379. | 
| 63 | VAN BEERS M M C, JISKOOT W, SCHELLEKENS H. On the role of aggregates in the immunogenicity of recombinant human interferon beta in patients with multiple sclerosis[J]. J. Interferon Cytokine Res., 2010, 30(10): 767-775. | 
| 64 | YEASMIN M, MOLLA M M A, ABDULLAH AL MASUD H M, et al.. Safety and immunogenicity of zika virus vaccine: a systematic review of clinical trials[J/OL]. Rev. Med. Virol., 2023, 33(1): e2385[2025-02-27]. . | 
| 65 | LI L, YAN X, XIA M, et al.. Nanoparticle/nanocarrier formulation as an antigen: the immunogenicity and antigenicity of itself[J]. Mol. Pharm., 2022, 19(1): 148-159. | 
| 66 | MARTINA C E, CROWE J E, MEILER J. Glycan masking in vaccine design: targets, immunogens and applications[J/OL]. Front. Immunol., 2023, 14: 1126034[2025-02-27]. . | 
| [1] | Jiangtao YANG, Yaohui HUANG, Zhixing WANG, Xujing WANG, Yue JIAO. Current Status of Research Application and Safety Regulation of Plant Bioreactors [J]. Current Biotechnology, 2025, 15(4): 565-572. | 
| [2] | Xiaoteng ZHANG, Jianjun HAN, Yan BAI. Research Progress on Forced Degradation of Biopharmaceuticals [J]. Current Biotechnology, 2022, 12(2): 236-242. | 
| [3] | DU Li, LIU Xiaozhi, WEI Jinshuang, GAO Jian*. Research Progress of Glycosylation Engineering of Protein Drug [J]. Curr. Biotech., 2020, 10(5): 448-455. | 
| [4] | WANG Guangyu1,2, XIAO Meitian1, ZHAO Peng1*, CHEN Junde2*. Progress on Collagen Aggregates and Their Aggregation Behavior [J]. Curr. Biotech., 2017, 7(6): 587-593. | 
| Viewed | ||||||
| Full text |  | |||||
| Abstract |  | |||||