| 1 | BECK A, WAGNER-ROUSSET E, AYOUB D, et al.. Characterization of therapeutic antibodies and related products[J]. Anal. Chem., 2013, 85(2): 715-736. | 
																													
																							| 2 | 张忠兵,韦薇,罗建辉.生物类似药糖基化相似性评价中的审评思考[J].中国新药杂志,2020,29(21):2476-2480. | 
																													
																							| 3 | 周爱萍.生物治疗药物和生物类似药研究进展[J].中国新药杂志,2017,26(3):296-299. | 
																													
																							| 4 | HELENE K, MURALIDHARAN M, SCHNEIDER Z, et al.. Antibodies to watch in 2020[J]. MAbs, 2020, 12(1): 1-8. | 
																													
																							| 5 | FDA. New Drug Therapy Approvals 2019 [EB/OL]. [2020-01-06]. . | 
																													
																							| 6 | WANG W. Instability, stabilization, and formulation of liquid protein pharmaceuticals[J]. Int. J. Pharm., 1999, 185(2): 129-188. | 
																													
																							| 7 | ALEXIS O, JOSEB F, MATIAS L. New trends in analysis of biopharmaceutical products[J]. Curr. Pharm. Anal., 2007, 3(4):230-248. | 
																													
																							| 8 | DHAMA K, MUNJAL A, HMN I. Recent advances and novel strategies for the development of biomedical therapeutics: state-of-the-art and future perspectives[J]. Int. J. Pharm., 2017, 13(7): 929-933. | 
																													
																							| 9 | GAVINA J, BRITZ-MCKIBBIN P. Protein unfolding and conformational studies by capillary electrophoresis[J]. Curr. Anal. Chem., 2007, 3(1): 17-31. | 
																													
																							| 10 | MCAVAN B S, BOWSHER L A, Powell T, et al.. Raman spectroscopy to monitor post-translational modifications and degradation in monoclonal antibody therapeutics[J]. Anal. Chem., 2020, 92(15): 10381-10389. | 
																													
																							| 11 | DIDIER C, VERONIQUE H, WOINET B, et al.. A spray freeze dried micropellet based formulation proof-of-concept for a yellow fever vaccine candidate[J]. Eur. J. Pharm. Biopharm., 2019, 142: 334-343. | 
																													
																							| 12 | DIDER C. Accurate prediction of vaccine stability under real storage conditions and during temperature excursions[J]. Eur. J. Pharm. Biopharm., 2018, 125: 76-84. | 
																													
																							| 13 | HALLEY J, CHOU Y R, CICCHINO C, et al.. An Industry perspective on forced degradation studies of biopharmaceuticals: survey outcome and recommendations[J]. J. Pharm., 2019, 109(1): 6-21. | 
																													
																							| 14 | HASELLBERG R, BRINKS V, HAWE A, et al.. Capillaryelectrophoresis-mass spectrometry using noncovalently coated capillariesfor the analysis of biopharmaceuticals[J]. Anal. Bioanal. Chem., 2011, 400: 295-303. | 
																													
																							| 15 | LIM A, DOYLE B L, KELLY G M, et al.. Characterization of a cathepsin D protease from CHO cell-free medium and mitigation of its impact on the stability of a recombinant therapeutic protein[J]. Biotechnol. Prog., 2018, 34(1): 120-129. | 
																													
																							| 16 | DOVGAN T, GOLGHALYANI V, ZURLO F, et al.. Targeted CHO cell engineering approaches can reduce HCP-related enzymatic degradation and improve mAb product quality[J]. Biotechnol. Bioeng., 2021, 118: 3821-3831. | 
																													
																							| 17 | PACEA L, WONG R L, ZHANG Y T, et al.. Asparagine deamidation dependence on buffer type, pH, and temperature[J]. J. Pharm., 2013, 102(6): 1712-1723. | 
																													
																							| 18 | PERICO N, PURTELL J, DILLON T M, et al.. Conformational implications of an inversed pH-dependent antibody aggregation[J]. J. Pharm., 2009, 98(9): 3031-3042. | 
																													
																							| 19 | PATEL J, KOTHARI R, TUNGA R, et al.. Stability considerations for biopharmaceuticals, part 1: overview of protein and peptide degradation pathways[J]. Bioprocess Int., 2011, 9(1): 20-31. | 
																													
																							| 20 | SINGH S K, MISHRA A, GOEL G, et al.. Modulation of granulocyte colony stimulating factor conformation and receptor binding by methionine oxidation[J]. Protein, 2020, 86(1): 1-13. | 
																													
																							| 21 | GRAF T, ABSTIENS K, WEDEKIND F, et al.. Controlled polysorbate 20 hydrolysis — a new approach to assess the impact of polysorbate 20 degradation on biopharmaceutical product quality in shortened time[J]. Eur. J. Pharm. Biopharm., 2020, 152: 318-326. | 
																													
																							| 22 | LIU H, GAZZ-BULSECO G, ZHOU L. Mass spectrometry analysis of photo-induced methionine oxidation of a recombinant human monoclonal antibody[J]. J. Am. Soc. Mass Spectrom., 2009, 20(3): 525-528. | 
																													
																							| 23 | SCHEICH C. Photo-degradation of therapeutic proteins: mechanistic aspects[J]. Pharm. Res., 2020, 37(3): 2763-2768. | 
																													
																							| 24 | REID LO, VIGNONI M, MARTINS-FROMENT N, et al.. Photochemistry of tyrosine dimer: when an oxidative lesionof proteins is able to photoinduce further damage[J]. Photochem. Photobiol. Sci., 2019, 18(7): 1732-1741. | 
																													
																							| 25 | HEMMLER D, GONSIOR M, POWERS L C, et al.. Simulated sunlight selectively modifies Maillard reaction products in a wide array of chemical reactions[J].Chemistry, 2019, 25(57): 13208-13217. | 
																													
																							| 26 | KAUR H, KAMALOV M, BRIMBLE M A. Chemical synthesis of peptidescontaining site-specific advanced glycation endproducts[J]. Acc. Chem. Res., 2016, 49(10): 2199-2208. | 
																													
																							| 27 | JACOBITZ A W, DYLSTRA A B, SPAHR C, et al.. Effects of buffer composition on site-specific glycation of lysine residues in monoclonal antibodies[J]. J. Pharm., 2019, 109(1): 1606-1615. | 
																													
																							| 28 | LAMORE S D, AZIMIAN S, HORN D, et al.. The malondialdehyde-derived fluorophore DHP-lysineis a potent sensitizer of UVA-induced photooxidative stress inhuman skin cells[J]. J. Photochem. Photobiol. B, 2010, 101(3): 251-264. | 
																													
																							| 29 | LATYPOV R F, HOGAN S, LAU H, et al.. Elucidation of acid-induced unfolding and aggregation of human immunoglobulin IgG1 and IgG2 Fc[J]. J. Biolog. Chem., 2011, 287(2): 1381-1396. | 
																													
																							| 30 | HAUPTMANN A, PODGOREK K, KUZMAN D, et al.. Impact of buffer, protein concentration and sucrose addition on the aggregation and particle formation during freezing and thawing[J]. Pharm. Res., 2018, 35(5): 101-117. | 
																													
																							| 31 | KEVIN P, KEN T, CHAD E, et al.. Solution pH jump during antibody and Fc-fusion protein thaw leads to increased aggregation[J]. J. Pharm. Anal., 2018, 8(5): 302-306. | 
																													
																							| 32 | JUN Z, CHRISTOPHER W, FENG H, et al.. Structural changes and aggregation mechanisms of two different dimers of an IgG2 monoclonal antibody[J]. Biochemistry, 2018, 57(37): 5466-5479. | 
																													
																							| 33 | BEE J S, STEVENSON J L, MEHTA B, et al.. Response of a concentrated monoclonal antibody formulation to high shear[J]. Biotechnol. Bioeng., 2009, 103(5): 936-943. | 
																													
																							| 34 | WANG W, NEMA S, TEAGARDEN D. Protein aggregation-pathways and influencing factors[J]. Int. J. Pharm., 2010, 390(2): 89-99. | 
																													
																							| 35 | MAA Y F, HSU C C. Effect of high shear on proteins[J]. Biotechnol. Bioeng., 2015, 51(4): 458-465. | 
																													
																							| 36 | MARCH D, BIANCO V, FRANZESE G. Protein unfolding and aggregation near a hydrophobic interface[J]. Polymers, 2021, 13(1): 156-170. | 
																													
																							| 37 | FLEISCHMAN M L, CHUNG J, PAUL E P, et al.. Shipping induced aggregation in therapeutic antibodies: utilization of a scale down model to assess degradation in mAbs[J]. J. Pharm. Sci., 2016, 106(4): 994-1000. | 
																													
																							| 38 | SSK A, SMP B, RS C, et al.. Key factors governing the reconstitution time of high concentration lyophilized protein formulations[J]. Eur. J. Pharm. Biopharm., 2021, 165: 361-373. | 
																													
																							| 39 | JEAN-RENE A, RODRIGUES M A, SERGUEI T, et al.. Freezing of biologicals revisited: scale, stability, excipients, and degradation stresses[J]. J. Pharm. Sci., 2020, 109(1): 44-61. | 
																													
																							| 40 | AL-HUSSEIN A, GIESELER H. Investigation of histidine stabilizing effects on LDH during freeze-drying[J]. J. Pharm. Sci., 2013, 102(3): 813-826. | 
																													
																							| 41 | SEIFERT I, FRIESS W. Improvement of arginine hydrochloride based antibody lyophilisates[J]. Int. Pharm., 2020, 589: 118589-118688. | 
																													
																							| 42 | ARAKAWA T, PRESTRELSKI S J, KENNEY W C, et al.. Factors affecting short-term and long-term stabilities of proteins[J]. Adv. Drug Deliv. Rev., 2001, 46: 307-326. | 
																													
																							| 43 | 王静,赵文静,胡春梅,等.蛋白/多肽类药物脂质体的研究进展[J].化工技术与开发,2017,46(8):32-36. | 
																													
																							| 44 | HE P, TANG Z, LIN L, et al.. Novel biodegradable and pH-sensitive poly (ester amide) microspheres for oral insulin delivery[J]. Macromol. Biosci., 2012, 12(4): 547-556. | 
																													
																							| 45 | YU Y, SHAO Y, ZHOU M, et al.. Polyethylene glycol-derived polyelectrolyte-protein nanoclusters for protein drug delivery[J]. RSC Adv., 2021, 46: 521-532. | 
																													
																							| 46 | Houser J, KOSOUROVA J, KUBICKOVA M, et al.. Development of 48-condition buffer screen for protein stability assessment[J]. Biophys. Struc. Mech., 2021, 50: 461-471. | 
																													
																							| 47 | RABE M, KERTH A, BLUME A, et al.. Albumin displacement at the air-water interface by Tween (Polysorbate) surfactants[J]. Eur. Biophys. J., 2020, 49: 533-547. | 
																													
																							| 48 | EBEL C, EISENBERQ H, GHIRLANDO R. Probing protein-sugar inter⁃actions[J]. Biophys. J., 2000, 78(1): 385-393. | 
																													
																							| 49 | PALMER B, ANGUS K, TAYLOR L, et al.. Design of stability at ex⁃treme alkaline pH in streptococcal protein G [J]. J. Biotechnol., 2008, 134(3): 222-230. | 
																													
																							| 50 | WALTHER R, ZELIKIN A N. Chemical (neo) glycosylation of biological drugs[J]. Adv. Drug Deliv. Rev., 2021, 171: 62-76. | 
																													
																							| 51 | OYAMA K, OHKURI T, OCHI J, et al.. Abolition of aggregation of CH2 domain of human IgG1 when combining glycosylation and protein stabilization[J]. Biochem. Biophys. Res. Commun., 2021, 558: 114-119. | 
																													
																							| 52 | KANAZAWA I, NOSTU M, TANAKA K, et al.. An open-label longitudinal study on the efficacy of switching from insulin glargine or detemir to degludec in type 2 diabetes mellitus[J]. Int. Med., 2015, 54(13): 1591-1598. | 
																													
																							| 53 | ZHENG J, MA B, TSAI C J, et al.. Structural stability and dynamics of an amyloid-forming peptide GNNQQNY from the yeast prion Sup-35[J]. Biophys. J., 2006, 91(3): 824-833. |